12,658 research outputs found

    Personalized Cinemagraphs using Semantic Understanding and Collaborative Learning

    Full text link
    Cinemagraphs are a compelling way to convey dynamic aspects of a scene. In these media, dynamic and still elements are juxtaposed to create an artistic and narrative experience. Creating a high-quality, aesthetically pleasing cinemagraph requires isolating objects in a semantically meaningful way and then selecting good start times and looping periods for those objects to minimize visual artifacts (such a tearing). To achieve this, we present a new technique that uses object recognition and semantic segmentation as part of an optimization method to automatically create cinemagraphs from videos that are both visually appealing and semantically meaningful. Given a scene with multiple objects, there are many cinemagraphs one could create. Our method evaluates these multiple candidates and presents the best one, as determined by a model trained to predict human preferences in a collaborative way. We demonstrate the effectiveness of our approach with multiple results and a user study.Comment: To appear in ICCV 2017. Total 17 pages including the supplementary materia

    AutoSVD++: An Efficient Hybrid Collaborative Filtering Model via Contractive Auto-encoders

    Full text link
    Collaborative filtering (CF) has been successfully used to provide users with personalized products and services. However, dealing with the increasing sparseness of user-item matrix still remains a challenge. To tackle such issue, hybrid CF such as combining with content based filtering and leveraging side information of users and items has been extensively studied to enhance performance. However, most of these approaches depend on hand-crafted feature engineering, which are usually noise-prone and biased by different feature extraction and selection schemes. In this paper, we propose a new hybrid model by generalizing contractive auto-encoder paradigm into matrix factorization framework with good scalability and computational efficiency, which jointly model content information as representations of effectiveness and compactness, and leverage implicit user feedback to make accurate recommendations. Extensive experiments conducted over three large scale real datasets indicate the proposed approach outperforms the compared methods for item recommendation.Comment: 4 pages, 3 figure

    Discrete Factorization Machines for Fast Feature-based Recommendation

    Full text link
    User and item features of side information are crucial for accurate recommendation. However, the large number of feature dimensions, e.g., usually larger than 10^7, results in expensive storage and computational cost. This prohibits fast recommendation especially on mobile applications where the computational resource is very limited. In this paper, we develop a generic feature-based recommendation model, called Discrete Factorization Machine (DFM), for fast and accurate recommendation. DFM binarizes the real-valued model parameters (e.g., float32) of every feature embedding into binary codes (e.g., boolean), and thus supports efficient storage and fast user-item score computation. To avoid the severe quantization loss of the binarization, we propose a convergent updating rule that resolves the challenging discrete optimization of DFM. Through extensive experiments on two real-world datasets, we show that 1) DFM consistently outperforms state-of-the-art binarized recommendation models, and 2) DFM shows very competitive performance compared to its real-valued version (FM), demonstrating the minimized quantization loss. This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201
    corecore