7,155 research outputs found

    Minimization of DDoS false alarm rate in Network Security; Refining fusion through correlation

    Get PDF
    Intrusion Detection Systems are designed to monitor a network environment and generate alerts whenever abnormal activities are detected. However, the number of these alerts can be very large making their evaluation a difficult task for a security analyst. Alert management techniques reduce alert volume significantly and potentially improve detection performance of an Intrusion Detection System. This thesis work presents a framework to improve the effectiveness and efficiency of an Intrusion Detection System by significantly reducing the false positive alerts and increasing the ability to spot an actual intrusion for Distributed Denial of Service attacks. Proposed sensor fusion technique addresses the issues relating the optimality of decision-making through correlation in multiple sensors framework. The fusion process is based on combining belief through Dempster Shafer rule of combination along with associating belief with each type of alert and combining them by using Subjective Logic based on Jøsang theory. Moreover, the reliability factor for any Intrusion Detection System is also addressed accordingly in order to minimize the chance of false diagnose of the final network state. A considerable number of simulations are conducted in order to determine the optimal performance of the proposed prototype

    A reranking approach for context-based concept fusion in video indexing and retrieval

    Full text link

    Methodology and Algorithms for Pedestrian Network Construction

    Get PDF
    With the advanced capabilities of mobile devices and the success of car navigation systems, interest in pedestrian navigation systems is on the rise. A critical component of any navigation system is a map database which represents a network (e.g., road networks in car navigation systems) and supports key functionality such as map display, geocoding, and routing. Road networks, mainly due to the popularity of car navigation systems, are well defined and publicly available. However, in pedestrian navigation systems, as well as other applications including urban planning and physical activities studies, road networks do not adequately represent the paths that pedestrians usually travel. Currently, there are no techniques to automatically construct pedestrian networks, impeding research and development of applications requiring pedestrian data. This coupled with the increased demand for pedestrian networks is the prime motivation for this dissertation which is focused on development of a methodology and algorithms that can construct pedestrian networks automatically. A methodology, which involves three independent approaches, network buffering (using existing road networks), collaborative mapping (using GPS traces collected by volunteers), and image processing (using high-resolution satellite and laser imageries) was developed. Experiments were conducted to evaluate the pedestrian networks constructed by these approaches with a pedestrian network baseline as a ground truth. The results of the experiments indicate that these three approaches, while differing in complexity and outcome, are viable for automatically constructing pedestrian networks

    An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

    Get PDF
    Capturing and modelling 3D information of the built environment is a big challenge. A number of techniques and technologies are now in use. These include EDM, GPS, and photogrammetric application, remote sensing and traditional building surveying applications. However, use of these technologies cannot be practical and efficient in regard to time, cost and accuracy. Furthermore, a multi disciplinary knowledge base, created from the studies and research about the regeneration aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc. In order to have an adequate diagnosis of regeneration, it is necessary to describe buildings and surroundings by means of documentation and plans. However, at this point in time the foregoing is considerably far removed from the real situation, since more often than not it is extremely difficult to obtain full documentation and cartography, of an acceptable quality, since the material, constructive pathologies and systems are often insufficient or deficient (flat that simply reflects levels, isolated photographs,..). Sometimes the information in reality exists, but this fact is not known, or it is not easily accessible, leading to the unnecessary duplication of efforts and resources. In this paper, we discussed 3D laser scanning technology, which can acquire high density point data in an accurate, fast way. Besides, the scanner can digitize all the 3D information concerned with a real world object such as buildings, trees and terrain down to millimetre detail Therefore, it can provide benefits for refurbishment process in regeneration in the Built Environment and it can be the potential solution to overcome the challenges above. The paper introduce an approach for scanning buildings, processing the point cloud raw data, and a modelling approach for CAD extraction and building objects classification by a pattern matching approach in IFC (Industry Foundation Classes) format. The approach presented in this paper from an undertaken research can lead to parametric design and Building Information Modelling (BIM) for existing structures. Two case studies are introduced to demonstrate the use of laser scanner technology in the Built Environment. These case studies are the Jactin House Building in East Manchester and the Peel building in the campus of University Salford. Through these case studies, while use of laser scanners are explained, the integration of it with various technologies and systems are also explored for professionals in Built Environmen

    Online Mutual Foreground Segmentation for Multispectral Stereo Videos

    Full text link
    The segmentation of video sequences into foreground and background regions is a low-level process commonly used in video content analysis and smart surveillance applications. Using a multispectral camera setup can improve this process by providing more diverse data to help identify objects despite adverse imaging conditions. The registration of several data sources is however not trivial if the appearance of objects produced by each sensor differs substantially. This problem is further complicated when parallax effects cannot be ignored when using close-range stereo pairs. In this work, we present a new method to simultaneously tackle multispectral segmentation and stereo registration. Using an iterative procedure, we estimate the labeling result for one problem using the provisional result of the other. Our approach is based on the alternating minimization of two energy functions that are linked through the use of dynamic priors. We rely on the integration of shape and appearance cues to find proper multispectral correspondences, and to properly segment objects in low contrast regions. We also formulate our model as a frame processing pipeline using higher order terms to improve the temporal coherence of our results. Our method is evaluated under different configurations on multiple multispectral datasets, and our implementation is available online.Comment: Preprint accepted for publication in IJCV (December 2018

    Functional Dissection of Brainstem Circuitry

    Get PDF
    Eat. Sleep. Breathe. Move. These functions, critical to an individual’s survival, are controlled by highly conserved neurotransmitter and neuromodulatory systems, which are principally located in the brainstem. These different brainstem neural populations, while performing apparently simple life sustaining functions, are remarkably complex. For proper function, survival circuits need to receive information from brain regions responsible for sensing survival needs, and rapidly exert broad control over the brain to generate adaptive behavior like foraging during energy deficit and escape from predation. How can survival circuits generate such autocratic control? Survival circuits principally affect global brain function in two ways: diffuse projection patterns and transmitter co-release. Through these two mechanisms, cell types small in number can have an enormous impact on neural processing and behavioral output through combinatorial complexity. However, the properties that allow these systems to address critical survival needs also make them exceptionally difficult to study; and current technology is no match to the complexity of the circuit. To understand the role that these neural circuits play in the functioning animal, it is necessary to develop technologies that can identify molecular markers, which will provide an access point for the study and manipulation of different cell types. The current work presents studies that I’ve performed over the past three and a half years, where I have sought to functionally dissect neural circuits of the brainstem. Through the development and application of a number of novel molecular technologies, we have gained critical insight into the molecular and neural basis of behavior. The first part of this work describes the functional dissection of dorsal raphe cell types to elucidate their role in modulating survival functions. The second part outlines the development of a novel technology, Retro-TRAP, which we developed to address a critical, unmet need in neuroscience: molecular profiling of neurons based on their connectivity. In these studies, a particular emphasis was placed on the dopaminergic and serotonergic nuclei of the midbrain (the ventral tegmental area/substantia nigra pars compacta and dorsal raphe, respectively), as they are essential for key survival behaviors, such as feeding and locomotion. These populations of neurons are therefore ideal for studying the generation of purposive behaviors in the context of survival circuitry

    Demand Response Method Considering Multiple Types of Flexible Loads in Industrial Parks

    Full text link
    With the rapid development of the energy internet, the proportion of flexible loads in smart grid is getting much higher than before. It is highly important to model flexible loads based on demand response. Therefore, a new demand response method considering multiple flexible loads is proposed in this paper to character the integrated demand response (IDR) resources. Firstly, a physical process analytical deduction (PPAD) model is proposed to improve the classification of flexible loads in industrial parks. Scenario generation, data point augmentation, and smooth curves under various operating conditions are considered to enhance the applicability of the model. Secondly, in view of the strong volatility and poor modeling effect of Wasserstein-generative adversarial networks (WGAN), an improved WGAN-gradient penalty (IWGAN-GP) model is developed to get a faster convergence speed than traditional WGAN and generate a higher quality samples. Finally, the PPAD and IWGAN-GP models are jointly implemented to reveal the degree of correlation between flexible loads. Meanwhile, an intelligent offline database is built to deal with the impact of nonlinear factors in different response scenarios. Numerical examples have been performed with the results proving that the proposed method is significantly better than the existing technologies in reducing load modeling deviation and improving the responsiveness of park loads.Comment: Submitted to Expert Systems with Application
    • …
    corecore