3 research outputs found

    Distributed multi-view image coding with learned dictionaries

    Get PDF
    This paper addresses the problem of distributed image coding in camera neworks. The correlation between multiple images of a scene captured from different viewpoints can be effiiciently modeled by local geometric transforms of prominent images features. Such features can be efficiently represented by sparse approximation algorithms using geometric dictionaries of various waveforms, called atoms. When the dictionaries are built on geometrical transformations of some generating functions, the features in different images can be paired with simple local geometrical transforms, such as scaling, rotation or translations. The construction of the dictionary however represents a trade-off between approximation performance that generally improves with the size of the dictionary, and cost for coding the atoms indexes. We propose a learning algorithm for the construction of dictionaries adapted to stereo omnidirectional images. The algorithm is based on a maximum likelihood solution that results in atoms adapted to both image approximation and stereo matching. We then use the learned dictionary in a Wyner-Ziv multi-view image coder built on a geometrical correlation model. The experimental results show that the learned dictionary improves the rate- distortion performance of the Wyner-Ziv coder at low bit rates compared to a baseline parametric dictionary

    Multiterminal Video Coding: From Theory to Application

    Get PDF
    Multiterminal (MT) video coding is a practical application of the MT source coding theory. For MT source coding theory, two problems associated with achievable rate regions are well investigated into in this thesis: a new sufficient condition for BT sum-rate tightness, and the sum-rate loss for quadratic Gaussian MT source coding. Practical code design for ideal Gaussian sources with quadratic distortion measure is also achieved for cases more than two sources with minor rate loss compared to theoretical limits. However, when the theory is applied to practical applications, the performance of MT video coding has been unsatisfactory due to the difficulty to explore the correlation between different camera views. In this dissertation, we present an MT video coding scheme under the H.264/AVC framework. In this scheme, depth camera information can be optionally sent to the decoder separately as another source sequence. With the help of depth information at the decoder end, inter-view correlation can be largely improved and thus so is the compression performance. With the depth information, joint estimation from decoded frames and side information at the decoder also becomes available to improve the quality of reconstructed video frames. Experimental result shows that compared to separate encoding, up to 9.53% of the bit rate can be saved by the proposed MT scheme using decoder depth information, while up to 5.65% can be saved by the scheme without depth camera information. Comparisons to joint video coding schemes are also provided

    Two-terminal video coding

    No full text
    Following recent works on the rate region of the quadratic Gaussian two-terminal source coding problem and limit-approaching code designs, this paper examines multiterminal source coding of two correlated, i.e., stereo, video sequences to save the sum rate over independent coding of both sequences. Two multiterminal video coding schemes are proposed. In the first scheme, the left sequence of the stereo pair is coded by H.264/AVC and used at the joint decoder to facilitate Wyner-Ziv coding of the right video sequence. The first I-frame of the right sequence is successively coded by H.264/AVC intracoding and Wyner-Ziv coding. An efficient stereo matching algorithm based on loopy belief propagation is then adopted at the decoder to produce pixel-level disparity maps between the corresponding frames of the two decoded video sequences on the fly. Based on the disparity maps, side information for both motion vectors and motion-compensated residual frames of the right sequence are generated at the decoder before Wyner-Ziv encoding. In the second scheme, source splitting is employed on top of classic and Wyner-Ziv coding for compression of both I-frames to allow flexible rate allocation between the two sequences. Experiments with both schemes on stereo video sequences using H.264/AVC, LDPC codes for Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with LDPC codes for Wyner-Ziv coding of the residual coefficients give a slightly lower sum rate than separate H.264/AVC coding of both sequences at the same video quality
    corecore