17 research outputs found

    Two-Level discretization techniques for ground state computations of Bose-Einstein condensates

    Get PDF
    This work presents a new methodology for computing ground states of Bose-Einstein condensates based on finite element discretizations on two different scales of numerical resolution. In a pre-processing step, a low-dimensional (coarse) generalized finite element space is constructed. It is based on a local orthogonal decomposition and exhibits high approximation properties. The non-linear eigenvalue problem that characterizes the ground state is solved by some suitable iterative solver exclusively in this low-dimensional space, without loss of accuracy when compared with the solution of the full fine scale problem. The pre-processing step is independent of the types and numbers of bosons. A post-processing step further improves the accuracy of the method. We present rigorous a priori error estimates that predict convergence rates H^3 for the ground state eigenfunction and H^4 for the corresponding eigenvalue without pre-asymptotic effects; H being the coarse scale discretization parameter. Numerical experiments indicate that these high rates may still be pessimistic.Comment: Accepted for publication in SIAM J. Numer. Anal., 201

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    The Finite Element Method for the time-dependent Gross-Pitaevskii equation with angular momentum rotation

    Get PDF
    We consider the time-dependent Gross-Pitaevskii equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with the finite element method. We analyze a mass conserving Crank-Nicolson-type discretization and prove corresponding a priori error estimates with respect to the maximum norm in time and the L2L^2- and energy-norm in space. The estimates show that we obtain optimal convergence rates under the assumption of additional regularity for the solution to the Gross-Pitaevskii equation. We demonstrate the performance of the method in numerical experiments

    A reduced basis localized orthogonal decomposition

    Get PDF
    In this work we combine the framework of the Reduced Basis method (RB) with the framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite Element space into a low dimensional space with comparably good approximation properties and a remainder space with negligible information. The low dimensional space is spanned by locally supported basis functions associated with the node of a coarse mesh obtained by solving decoupled local problems. However, for parameter dependent multiscale problems, the local basis has to be computed repeatedly for each choice of the parameter. To overcome this issue, we propose an RB approach to compute in an "offline" stage LOD for suitable representative parameters. The online solution of the multiscale problems can then be obtained in a coarse space (thanks to the LOD decomposition) and for an arbitrary value of the parameters (thanks to a suitable "interpolation" of the selected RB). The online RB-LOD has a basis with local support and leads to sparse systems. Applications of the strategy to both linear and nonlinear problems are given

    Numerical homogenization for nonlinear strongly monotone problems

    Get PDF
    In this work we introduce and analyze a new multiscale method for strongly nonlinear monotone equations in the spirit of the Localized Orthogonal Decomposition. A problem-adapted multiscale space is constructed by solving linear local fine-scale problems which is then used in a generalized finite element method. The linearity of the fine-scale problems allows their localization and, moreover, makes the method very efficient to use. The new method gives optimal a priori error estimates up to linearization errors. The results neither require structural assumptions on the coefficient such as periodicity or scale separation nor higher regularity of the solution. The effect of different linearization strategies is discussed in theory and practice. Several numerical examples including stationary Richards equation confirm the theory and underline the applicability of the method
    corecore