372 research outputs found

    Removing multiplicative noise by Douglas-Rachford splitting methods

    Full text link
    Multiplicative noise appears in various image processing applications, e.g., in synthetic aperture radar (SAR), ultrasound imaging or in connection with blur in electronic microscopy, single particle emission computed tomography (SPECT) and positron emission tomography (PET). In this paper, we consider a variational restoration model consisting of the I-divergence as data fitting term and the total variation semi-norm or nonlocal means as regularizer. Although the I-divergence is the typical data fitting term when dealing with Poisson noise we substantiate why it is also appropriate for cleaning Gamma noise. We propose to compute the minimizer of our restoration functional by applying Douglas-Rachford splitting techniques, resp. alternating split Bregman methods, combined with an efficient algorithm to solve the involved nonlinear systems of equations. We prove the Q-linear convergence of the latter algorithm. Finally, we demonstrate the performance of our whole scheme by numerical examples. It appears that the nonlocal means approach leads to very good qualitative results

    Multiscale hierarchical decomposition methods for images corrupted by multiplicative noise

    Full text link
    Recovering images corrupted by multiplicative noise is a well known challenging task. Motivated by the success of multiscale hierarchical decomposition methods (MHDM) in image processing, we adapt a variety of both classical and new multiplicative noise removing models to the MHDM form. On the basis of previous work, we further present a tight and a refined version of the corresponding multiplicative MHDM. We discuss existence and uniqueness of solutions for the proposed models, and additionally, provide convergence properties. Moreover, we present a discrepancy principle stopping criterion which prevents recovering excess noise in the multiscale reconstruction. Through comprehensive numerical experiments and comparisons, we qualitatively and quantitatively evaluate the validity of all proposed models for denoising and deblurring images degraded by multiplicative noise. By construction, these multiplicative multiscale hierarchical decomposition methods have the added benefit of recovering many scales of an image, which can provide features of interest beyond image denoising

    Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities

    Full text link
    Intensity inhomogeneities in images constitute a considerable challenge in image segmentation. In this paper we propose a novel biconvex variational model to tackle this task. We combine a total variation approach for multi class segmentation with a multiplicative model to handle the inhomogeneities. Our method assumes that the image intensity is the product of a smoothly varying part and a component which resembles important image structures such as edges. Therefore, we penalize in addition to the total variation of the label assignment matrix a quadratic difference term to cope with the smoothly varying factor. A critical point of our biconvex functional is computed by a modified proximal alternating linearized minimization method (PALM). We show that the assumptions for the convergence of the algorithm are fulfilled by our model. Various numerical examples demonstrate the very good performance of our method. Particular attention is paid to the segmentation of 3D FIB tomographical images which was indeed the motivation of our work

    Multiplicative Noise Removal with a Sparsity-Aware Optimization Model

    Get PDF
    Restoration of images contaminated by multiplicative noise (also known as speckle noise) is a key issue in coherent image processing. Notice that images under consideration are often highly compressible in certain suitably chosen transform domains. By exploring this intrinsic feature embedded in images, this paper introduces a variational restoration model for multiplicative noise reduction that consists of a term reflecting the observed image and multiplicative noise, a quadratic term measuring the closeness of the underlying image in a transform domain to a sparse vector, and a sparse regularizer for removing multiplicative noise. Being different from popular existing models which focus on pursuing convexity, the proposed sparsity-aware model may be nonconvex depending on the conditions of the parameters of the model for achieving the optimal denoising performance. An algorithm for finding a critical point of the objective function of the model is developed based on coupled fixed-point equations expressed in terms of the proximity operator of functions that appear in the objective function. Convergence analysis of the algorithm is provided. Experimental results are shown to demonstrate that the proposed iterative algorithm is sensitive to some initializations for obtaining the best restoration results. We observe that the proposed method with SAR-BM3D filtering images as initial estimates can remarkably outperform several state of-art methods in terms of the quality of the restored images

    A Neural-Network-Based Convex Regularizer for Image Reconstruction

    Full text link
    The emergence of deep-learning-based methods for solving inverse problems has enabled a significant increase in reconstruction quality. Unfortunately, these new methods often lack reliability and explainability, and there is a growing interest to address these shortcomings while retaining the performance. In this work, this problem is tackled by revisiting regularizers that are the sum of convex-ridge functions. The gradient of such regularizers is parametrized by a neural network that has a single hidden layer with increasing and learnable activation functions. This neural network is trained within a few minutes as a multi-step Gaussian denoiser. The numerical experiments for denoising, CT, and MRI reconstruction show improvements over methods that offer similar reliability guarantees
    corecore