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ABSTRACT. Restoration of images contaminated by multiplicative noise (also
known as speckle noise) is a key issue in coherent image processing. Notice
that images under consideration are often highly compressible in certain suit-
ably chosen transform domains. By exploring this intrinsic feature embedded
in images, this paper introduces a variational restoration model for multiplica-
tive noise reduction that consists of a term reflecting the observed image and
multiplicative noise, a quadratic term measuring the closeness of the underly-
ing image in a transform domain to a sparse vector, and a sparse regularizer
for removing multiplicative noise. Being different from popular existing mod-
els which focus on pursuing convexity, the proposed sparsity-aware model may
be nonconvex depending on the conditions of the parameters of the model for
achieving the optimal denoising performance. An algorithm for finding a criti-
cal point of the objective function of the model is developed based on coupled
fixed-point equations expressed in terms of the proximity operator of functions
that appear in the objective function. Convergence analysis of the algorithm
is provided. Experimental results are shown to demonstrate that the proposed
iterative algorithm is sensitive to some initializations for obtaining the best
restoration results. We observe that the proposed method with SAR-BM3D
filtering images as initial estimates can remarkably outperform several state-
of-art methods in terms of the quality of the restored images.
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1. Introduction. Multiplicative noise (i.e., speckle noise) appears naturally in co-
herent imaging systems, such as ultrasound imaging [31], laser imaging [27] and
synthetic aperture radar (SAR) [24], due to random interference between coherent
returns. Observed intensity images through coherent imaging systems usually have
low signal-to-noise (SNR) ratios and high noise levels [2]. Suppressing noise in these
images is therefore of vital importance in follow-up processes by human observers
or computer programs. The goal of this paper is to develop efficient methods for
restoration of images contaminated by multiplicative noise.
An image f degraded by multiplicative noise is modeled in the form of

(1) f=uon,
where u ® 7 denotes the componentwise multiplication of a clean image w and noise
7. We assume that each component of the clean image u and the noise 7 is positive,
and so is that of f. The multiplicative noise in each pixel is usually assumed to
follow a Gamma distribution with probability density function [13]
LL —Lv
v) = ——e Y,

where I' is the classical Gamma function and L is the number of looks. Hence
n has mean 1 and standard deviation 1/v/L. A high number L corresponds to
a high signal-to-noise ratio of the observed image. Using the Bayesian maximum
a posteriori (MAP) estimator for multiplicative Gamma noise, various variational
models [1,4,10-12,14,16,17,19, 28, 32] for removing multiplicative noise were pro-
posed recently. In [1], a model, referred to as AA model, has a nonconvex data
fidelity term and a convex total variation regularization term. Through the log-
arithm transform, many methods form optimization convex models by using the
log-image data and the exponential of the obtained minimizer is considered as the
restored image, see e.g. [4,12,14,16,28] and the reference therein. The mth root
transformation for relaxing the nonconvexity of AA model has considered in [17,32].
Based on the statistics of the noise, an additional quadratic penalty term in [11] is
added to the AA model to obtain a strictly convex one under certain conditions. In
addition, the convex I-divergence (I-DIV) model [29], typically designed for dealing
with Poisson noise, was used for speckle reduction. Most recently, by using Box-
Cox transformation, the multiplicative noise removal problem was converted into
the additive noise removal problem followed by applying BM3D method to get the
final recovered image [15].

In our recent work [20], the following model was proposed in the log-image domain

: f er
(2) féﬁ{i{<x+em’1>+a \/?—61

where (-,-) and || - ||2 denote the standard inner product and the usual 2-norm over
R™, respectively, « is a positive number, 1 denotes the vector having one for all
components, 8 > 1 depends on the noise level, and A is the positive regularization
parameter. The term ||z|rv denotes the total variation (TV) of z. The operation
% denotes the componentwise division of f by w for f,w € R}. Let N be the
set of all natural numbers and N,, := {1,2,...,n}. The exponential function at
r € R? is defined as e := (e¥ : i € N,,) and the square root function at w € R‘i
as yw := (yw; : i € N,,). The three terms in the objective function of (2) are:
a data fitting term resulting directly from the presence of the multiplicative noise,

2
+ )\||$||Tv} ,
2
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a quadratic term reflecting the statistics of the noise, and a sparse regularizer.
Numerical experiments presented in [20] show that this model compares favorably
to several state-of-the-art reference models in terms of the peak signal-to-noise ratios
of the denoised images and the CPU time consumed.

Certain restrictions were imposed on the parameters o and 8 to ensure the con-
vexity of the optimization model (2), which certainly limit the ability of the model
to yield denoised images of high quality. Furthermore, for the TV regularization,
it is only optimal in describing piecewise constant images and sometime causes un-
desirable staircase artifacts. We can view the TV regularization in a different way.
The total variation ||z||Tv can be rewritten as ¢(Hz), where ¢ is an {5 ;-like sparse
promoting function and H is from the first order difference matrix. Therefore, the
total variation regularization prefers Hx to be sparse. Unfortunately, Hz is not
sparse in general, and, as a result, the denoised image with model (2) may suffer
from over-constraints on its sparsity under the first order difference matrix H. In-
stead, Hx is approximately sparse in the sense that it consists of a few significant
entries while the rest of the entries are essentially negligible.

In this paper we propose a new model for multiplicative noise removal that can
address the aforementioned issues in model (2). This model is nonsmooth, and
could be nonconvex for obtaining the restoration performance. We characterize
the solutions of the model via a coupled fixed-point equations derived from the
proximity operators of the functions associated with the model. An algorithm
based on the characterization is developed to find the solutions of the fixed-point
equations. Convergence analysis of the algorithm is provided. The performance of
our method is demonstrated with numerical examples.

The rest of this paper is organized as follows. In section 2, we introduce our
model for multiplicative noise removal and study mathematical properties of the
model. In section 3, we develop an algorithm for the model and then analyze its
convergence property. In section 4, we specify the proposed model regularized by
TV and present the corresponding algorithm for solving it. We review some existing
models for multiplicative noise removal in section 5. We demonstrate performance
of our model with numerical examples in section 6 and give a conclusion in section 7.
2. Proposed model and its characterization. This section contains main re-
sults concerning multiplicative noise removal. We present a variational model for
restoring images degraded by multiplicative noise. The proposed model is motivated
from addressing the issues in model (2) mentioned above. We study the existence
of solutions to the proposed model and explore conditions that make the result-
ing model convex. The solutions of the model are characterized in terms of the
fixed-points of a nonlinear map formed via the proximity operators of the functions
appearing in the model. Based on the characterization, we develop an algorithm
for finding solutions of the model. Convergence analysis of the proposed algorithm
is provided.

2.1. Model. An image is often assumed to have a sparse representation under a
basis having vanishing moments. The total variation [26] and wavelets (such as
orthogonal wavelets, framelets, curvelets, bandedlets, and the discrete cosine trans-
form [8,9]) are appropriate bases for fulfilling this requirement. Let H denote the
transform matrix associated with the filters of an wavelet system. For an image
x, Hx is the vector of the wavelet coefficients of z. From the viewpoint of wavelet
analysis, the vector Hx is approximately sparse, that is, this vector has few signif-
icant components while the rest of its components are essentially negligible. With
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this in mind, we propose the following model to reconstruct the clean image u in

(1):

(3) min {J(z,y) : (z,y) € R® x R™},
where for (z,y) € R” x R™, we define

(4) J(z,y) := @(x) + h(z,y) + ¥(y),

and

(5) O(z) = <x+€£71>+aHﬁ—ﬁl J’
(6) ha,y) = SlHz -yl

(7) V(y) = M(y),

where «, 8, p, and A are all positive. In (6), we assume that the matrix H of size
m X n is able to sparsify the image x while 1) is a sparsity promoting function. We
assume that v is a proper lower semicontinuous convex function on R™ and is able
to promote sparsity. Examples of such functions include the £, norm with 0 <p <1
and the ¢ 1 norm among many others. Suppose that a pair (z*,y*) is a solution of
problem (3). Then e® is viewed as an approximation to the clean image % in (1).

Let us explain the proposed model (3). There are two variables z and y in
the model. The first term ®(z) from the first two terms in model (2) reflects the
presence of the multiplicative noise and the statistics of the noise. The third term
U(y) enforces the sparsity of y. The image x is assumed to be almost sparse in its
information content under the transform H. We leverage this approximate sparsity
by measuring the closeness of Hx to y with their Euclidean distance given in the
second term.

2.2. Properties. In this subsection, we discuss the convexity properties of the
model (3) which will be utilized in the next subsection to characterize the solutions
of the model. We first show the condition ensuring that the function J(z,y), (z,y) €
R™ x R™, is convex with respect to (z,y), which leads to the uniqueness of the
solution of model (3). Then, we will show that, when taken under some relaxing
conditions, though the function J may be nonconvex with respect to (z,y), it is
definitely convex with each of z and y, separately.

Proposition 1. If o, 8, u, A are all positive numbers, 1 is a proper convez function
on R™, and H is an m X n matriz, then the solution set of model (3) is nonempty.

; " I ; 4 4096
Furthermore, if the positive numbers «, 3 satisfy inequality af* < ===, then the
solution of model (3) is unique.

Proof.  Since the vectors @ and n in (1) are positive, so is f. Hence, ® is a
continuous function on R” and is coercive, that is, lim; |, 4o ®(x) = 400 which
can be verified directly. Together with the coercivity assumption of ¥, the function
J in (3) is coercive on R"™ x R™, that is lim g y)|,—+o00 J(7,y) = +00. It implies
that there exists at least one solution to the optimization problem (3).

Next, we prove that problem (3) has only one solution under the condition a8* <
% and convexity assumption of W. To this end, it will be sufficient to show that
® + h is strictly convex on R™ x R™. By Theorem 2.4 in [20], ® in (5) is strictly

convex on R™ if af* < 49%. That is,
(8) AB(2) + (1= ND(E) > d(e + (1— NF)

INVERSE PROBLEMS AND IMAGING VoLUME 11, No. 6 (2017), 949-974
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hold for all distinct points  and Z in R”, and A € (0,1). We further notice that
h is convex on R™ x R™ and h(x,-) is strictly convex on R™ for any fixed x € R™.
That is, for any (z,y) and (Z,7) in R” x R™, and X € [0, 1]

(9) Mz, y)+ (1= Nh(@,7) > h(Az+ (1= N)Z, Ay + (1 — N)Y)
and for any fixed x € R", any two distinct points y and 4 in R™, and A € (0,1)
(10) A(z,y) + (1= Nh(z,g) > h(z, Ay + (1 = N)y).

By (8)-(10), for all distinct pairs (x,y) and (Z,y) in R™ x R™, and A € (0, 1),
A(@(2) + h(z,y)) + (1 = A)(2(2) + h(Z,9))
>OAr+ (1-NZ)+h(Az+ (1 -NZ, Ay + (1 - N)7g).

which, by the definition of strict convexity, implies the strict convexity of ® +h. As
a consequence, J is strictly convex on R™ x R™. O

(11)

Next, we explore other choices of o and 3 to ensure the convexity of the function
o+ 2 | with some p > 0. To this end, we adopt assumptions on positive numbers
a, B, and p:

H1. The parameters «, 3, and p are positive and satisfy one of the following three
conditions:

() apt < 192
(i) p> 22 or
(iii) g(t2) > 0if p < 0‘1—562, where

aIld
t+ — :;()ﬁ[’)’ + 9(){ [—)) - 128()5/) .

Associated with the parameters «, 3, and p in H1, for a fixed positive number a,
we define
2

O N P2
(12) ga(t)._t+et+a< - 6) +5t?, for tER,

which can be viewed as the one-dimensional counterpart of ® + £| - [|3. With the
function gg, the role of the conditions in H1 becomes clear in the following result.

Lemma 2.1. Let H1 hold. Then the function g, given in (12) is strictly convex
on R.

Proof.  Note that g}/ (t) = & + a(%: - gy/ £) + p is not constant on any open
interval of R. Then ¢//(t) > 0 for all t € R ensures the strict convexity of g, by
the definition of strict convexity. Actually, for any two distinct numbers ¢; and
to with t; < to and for any 7 € (0,1), by the mean-value theorem, there exist
&L e (t177't1 + (1 — T)tg) and & € (Ttl + (1 — T)tg,tg) such that

9a(t1) = ga(mt1 + (1 = T)t2) = —(1 = 7)(t2 — t1)g,(&1)
and
9a(t2) = ga(Tts + (1 = 7)ta) = 7(t2 — t1)g,(&2)-

INVERSE PROBLEMS AND IMAGING VoLUME 11, No. 6 (2017), 949-974
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Hence,

&2
(13) 7ga(tr)+(1—7)ga(ts) — g (1 + (1= 7)ts) :7(1—7)(t2_t1)/ g (t) dt > 0.

The inequality in (13) holds due to g7 being nonnegative and not constant on any
open interval of R. We conclude that g, is strictly convex. In the rest of the proof,
we just verify g/ > 0 on R under the conditions in H1.

If the first condition of H1 holds, then g//(t) > p, for all ¢ € R, is a direct
consequence of Lemma 2.3 in [20] (or Theorem 1 in [18]).

If the second condition of H1 holds, then g/ (t) = e%—&-a(\/%—g)%-(p—o‘%“) >0
for all t € R.

Finally, we show g/(t) > 0 under the third condition of H1. Note that g/ (t) =
ﬁq(%t), where ¢(s) = 1—}—0452—%33/2-1-@9 with s > 0. Hence, g/ (¢t) > 0 forallt € R

if and only if g(s) > 0 forall s > 0. If p < al—ﬁ;, then the derivative of ¢ at s is ¢'(s) =
2as—¥81/2+p =2(vs—t_)(y/s—ty), where t1 := 1~ (308 £ /9022 — 128ap).
We know that q achieves its local maximum at t2 with ¢(#2) > ¢(0) = 1 and has
its local minimum at 1&2+ with q(t%r) > 0 by the given condition. We conclude that

q(s) >0 for all s > 0. O
An extension of Lemma 2.1 to a higher dimension is as follows.

Lemma 2.2. Let H1 hold. Then the function ® := ® + 211 - 113 is strictly convez,
where ® is given in (5).

Proof. For x € R", we clearly have ®(z) = S s (z;), where g, is given in (12).
By Lemma 2.1, gy, are strictly convex for all 1 < ¢ < n, and so does ®. O

Next result is a direct consequence of Lemma 2.2. For the matrix H in (6), we
define

(14) a:=min{|H;[3:j = 1,2,....n},

where, Hj; is the jth column of the matrix H.

Lemma 2.3. If a in (14) and p are positive, H is an m X n matriz, and the
parameters ¢, 3, and p with p := ap fulfill H1, then for a given y € R™, J,(z) :=

®(x) + h(x,y), the sum of the first two terms in the objective function of (3), is
strictly convex with respect to each component of x € R™.

Proof. Set D := diag(||H.||3, || H2||3, ..., ||Hn||3). We have |[Hx —yl||2 = %xTDz—l—
r(x,y), where

1 1
r(x,y) = ixT(HTH — D)z — (z,H " v) + §||y||§
Then
Jy(@) =D guyu, 13 (25) + (2, y).
j=1
Note that all diagonal entries of H' H — D are zeros, in other words, 7(z,y) does

not contain terms with x? for all possible j. Therefore, the strict convexity of J, ()

with respect to each component of z, say x;, is completely determined by that of
. H;||2— . .
Gu|H,)12- Since gum,2(25) = Gapu(xs) + Wﬁ and gq, is strictly convex by

INVERSE PROBLEMS AND IMAGING VoLUME 11, No. 6 (2017), 949-974
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Lemma 2.2, indeed, J,(z) is strictly convex with respect to each element of z for a
fixed y. O

Lemma 2.4. If o, B, A\, i are positive numbers, H is an m X n matriz, and 1 in
(7) is convez, then for any fired x € R™, J(x,-) in model (3) is strictly conver.

Proof. Recall that J(z,y) = ®(z)+ h(z,y)+ ¥(y) for (z,y) € R® xR™. It is clear
that for any fixed € R™, h(z,-) is strictly convex. Together with the convexity of
¥, we conclude that J(zx,-) is strictly convex with respect to y. O

In the next subsection, we can apply those results developed in this subsection
to characterize the solutions of the model (3).

2.3. Characterizations. From Proposition 1, we know that the optimization prob-
lem (3) always has a solution. In this subsection, we will characterize this solution
through the notions of the proximity operator and subdifferentials which are two
fundamental tools in nonlinear optimization.

Recall that for ¢ : R? — (—00, +00] a proper and lower semicontinuous function,
the domain of ¢ is defined by domy := {z € R? : p(z) < +oo0}. For a given
z € domy, the Fréchet subdifferential of ¢ at z € R, denoted by d¢(z), is the set
of all vectors w € R? which satisfy

0p(z) :== {w e R?: liminf plv) = ¢lz) = (w,v = 2) > 0} .

vEZ V2 ||U — Z||2

When w ¢ domep, we set dp(z) = 0. If 0 € dp(z), then z is called a critical point
of ¢. Fermat’s rule is that if z € R? is a local minimizer of ¢ then 0 € dy(z).

If o1 : R — (—o0,+00] and s : R? — (—o0, +00] are subdifferentiable at z,
then ¢1 + 9 is subdifferentiable at z and 9(p; + ¢2)(2) D dv1(z) + dp2(z). In
particular, if ¢, is differentiable at z, then 9(¢1 + p2)(2) = Voi1(2) + 0p2(z). As
an application to our problem (3), we have that for (z,y) € domJ

(15) dJ(x,y) = (00(x) + Vh(z,y), Vyh(z,y) + 0¥ (y)),

where V, and V, are gradient operators with respect to x and y, respectively.

The proximity operator is another fundamental tool for developing algorithms
for nonsmooth and nonconvex optimization problems. Let ¢ : R? — (—oc0, +00] be
a proper and lower semicontinuous function. The prozimity operator of ¢ at z € R?
is defined by (see. e.g., [3,22])

1
prox, (z) := argmin {2”1) — 2|3+ pv):ve Rd} .

The proximity operator of ¢ is a set-valued operator from R to 2R If infra @ >
—o00, then the set proxw(z) is nonempty and compact. In addition, we say that ¢
is supercoercive if p(v)/||v|2 = +o0 as ||v||2 = +o0.

The following result characterizes the relationship between the proximity opera-
tor and subdifferential of a proper lower semicontinuous (nonconvex) function. This
proposition will serve as a basic tool for the algorithmic development of model (3).

Proposition 2. Let ¢ : R? — (—co,+00] be a proper lower semicontinuous func-
tion. If there exist vectors z,w € R satisfying

(16) z € prox,,(z + w),

INVERSE PROBLEMS AND IMAGING VoLUME 11, No. 6 (2017), 949-974
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then
(17) w € Op(z).

Conversely, if vectors z,w € R? satisfy (17) and the function @ :== || - |3 + ¢ is
conver and supercoercive, then the inclusion (16) holds. If ¢ is further assumed to
be strictly convex, the equation z = proxw(z + w) holds.

Proof. If the vectors z,w € R? satisfy (16), it follows from the definition of the
proximity operator that

1
(18) ZEargmin{2|v—(z+w)%—i—(p(v):vERd}.
Fermat’s rule implies that

(19) 0€(z—(z4+w))+ dp(2),

which is (17).
Next we show the converse of the proposition. Since @ is supercoercive, then

(3l — G+ w3+ @)/l = (@)~ (.2 +w) + 3z + w3/ ol
> 30)/l[v]l2 = 1z + wll2 = 400

V

as ||v]2 — 4o00. We conclude that for given z, w € R? the function 1||-—(z+w)||3+¢
is coercive and proper convex, and therefore by (19) it has z as one of its minimizers.
Hence, (16) holds. The strict convexity of @ clearly implies the strict convexity of
2l =(z + w)[|3 + ¢. It follows that || - —(z + w)||3 + ¢ has a unique minimizer,
that is, inclusion (18) becomes z = prox,,(z + w). O

The following two examples concretely indicate that the convexity assumption
on @ is necessary to the “converse” part of Proposition 2. For instance, in Example
2.5, even if ¢ is a concave function, the “converse” part of Proposition 2 holds
provided that @ is convex. Example 2.6 shows that (17) can not lead to (16) if @ is
nonconvex.

Example 2.5. Given a real number ¢, define p(z) := 22 for z € R. We get
0 € 9¢(0) and

0, if e < —2;

prox,(0) = ¢ R, ifc= —g;

{0}, otherwise.

We can see that if ¢ > —2 then $(z) := (c + 3)2? is supercoercive, strictly convex.
Hence, by identifying both z and w in Proposition 2 as zero, the above result is
consistent with the converse part of Proposition 2.

Example 2.6. Given a positive number ¢, define ¢(z) := —c|z| for z € R. We have
9¢(0) = [—¢, ] 3 0 and prox,,(0) = {—c,c}. The function $(z) := —c|z| + 522 is
supercoercive, but, nonconvex. We can see that the conditions of the converse part
in Proposition 2 are not fully satisfied and 0 ¢ prox,,(0).

With above preparations, we now characterize the solutions of model (3) in terms
of the proximity operators.

Proposition 3. Let a, 5, p and X be positive numbers, H be an m xn matriz, and ¢
be a proper convex function. If a, 8, and p satisfy H1 and the pair (z,y) € R" xR™

INVERSE PROBLEMS AND IMAGING VoLUME 11, No. 6 (2017), 949-974
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is a critical point of the optimization problem (3), then for any o > 0 the pair (z,y)
satisfies the following coupled equations

(20) x = proxig(r— %HT(HJJ -v)),
P
1
(21) y = proxig(y+ ;(Hx - y)).
Conversely, if a pair (z,y) € R™ x R™ satisfies (21) and
(22) prroxlcp(x—ﬁHT(Hx—y)),
, p

then the pair (x,y) is a critical point of J in (3). Moreover, if a given in (14) is
positive and the parameters o, B, and p with p := ap satisfy H1, then (x,y) is a
(local) minimizer or a saddle (but not a (local) maxzimizer) of J. In particular, if
the first condition in H1 holds, then (x,y) is definitely a global minimizer of (3).

Proof. 1If (x,y) € R™ x R™ is a critical point of the optimization problem (3), then
0 € 8J(z,y) which, by using (15), can be equivalently written as

(23) { 0ed (})@; () + LHT (Hz —y),
0€9(1v)(y) - L(Hz —y).

By Lemma 2.2, ® + £]| - ||3 is strictly convex which, together with the first inclusion
in (23) and Proposition 2, yields equation (20). Since ¥ is convex, for any ¢ > 0,
W+ Z| - |13 is coercive and strictly convex. It follows from Proposition 2 that the
second inclusion in (23) lead to equation (21).

Next, we show the converse of the proposition. From Proposition (2), relations
(22) and (21) lead to (23), which is equivalent to the relation 0 € 9.J(z,y), i.e.,
(z,y) is a critical point of J. Further, by Lemmas 2.3 and 2.4, the set of critical
points of J will not contain any (local) maximizer. Therefore, the pair (z,y) must
not be a (local) maximizer of (3). In particular, if o and 3 satisfy af* < %

2)26, from
Proposition 1, the pair (z,y) must be the unique minimizer of (3). O

We next show that a global minimizer of model (3) is a solution of the fixed-point
equations (20) and (21). To this end, we recall the so-called descent lemma which
is essential in our analysis.

Lemma 2.7 (Descent Lemma). If ¢ : R — R is a continuously differentiable
function whose gradient is Lipschitz with constant L, then for any u,v € R?,
L
(1) < p(v) + (Vep(v), u = v) + Z[|u = vll3.
This proof of the descent lemma can be found, see for example, in [23].

Proposition 4. Let o, 3, p, A, 0, and p be positive numbers, H be an m xn matriz,
and v be a proper convex function. If the pair (z,y) € R™ x R™ is a solution of
model (3) and p, o, u satisfy the inequality min{p, o} > u(||H||3 + 1), then (x,y) is
a solution of the coupled fized-point equations (20) and (21).

Proof. Let L := p(||H||3 + 1). First, one can directly verify that the gradient
of h in (6) is L-Lipschitz continuous. By the Descent Lemma and the condition
min{p, o} > p(||H|[|5 + 1), for any (Z,y) € R* x R™,

P~ o~
+ 5\\95 — |3+ §||y —yl3.
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On the other hand, since the pair (z,y) € R™ x R™ is a solution of model (3), we
have that

O(2) + h(z,y) + ¥(y) < ©(Z) + h(Z,9) + V(7).
Combining the above inequalities together yields

Q@) +W(y) < @) +p@E—a H (He—y) + )7 -2l

~ ~ o~
(@) = py v, (He =) + 57—yl
Since the above inequality holds for an arbitrary pair (z,y) € R™ x R™, we conclude

that
(@) < OF) + (@ —a, H' (Hz —y)) + 517 - [}

and
(y) < W) - pf -y, (Ha - ) + 217 - I3,

which imply (20) and (21), respectively. O

3. Convergence analysis. The coupled fixed-point equations (20) and (21) pre-
sented in Proposition 3 naturally leads to an iterative scheme to find a critical
point of the objective function of model (3). This scheme is as follows: Set an
initial estimate (2°,9°) € R™ x R™, iterate for k = 0,1, ...,

{ 2+ € proxig(¢™ — LHT (Ha™ —y ™)),

24 °
(24) YD = prox g (o) + £ (Ha®+) — y®)),

We rewrite iterative scheme (24) in a compact form. For the positive parameters p
and o, proper lower semi-continuous function ® and convex function ¥, we define
a set-valued mapping 7 : R™™ — 28" at 4 := (z,y) € R® x R™ by

(25) T(u) = prOX%q>(x) X prox iy (y).
And we define
0 0 In—YHTH LHT
R A R A |

and

R:= R + R».
With the above notation, the iterative scheme (24) can be rewritten in a compact
equivalent form as

(26) u* Y e T(Ryu*+Y 4 Ryu®).
We next analyze convergence of the iterative scheme (24).
Lemma 3.1. The set-valued mapping T defined by (25) is continuous.

Proof. Note that the mapping 7 consists of the two proximity operators. The
conclusion can be directly followed by the fact that the proximity operator of a
proper lower semi-continuous function is continuous [7]. O

The generated sequence is denoted by
W= {u® : k € N}, where N := {1,2,...}
To prove the convergence of the sequence W, the following lemmas are useful.
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Lemma 3.2. Let a, (8, p, A\, g, and pu be positive numbers, H be an m X n matriz,
1 be a proper conver function, and W be the sequence generated by the iterative
scheme (24). If the following conditions hold:

(i) the sequence W is bounded, and

(i) limp_ oo ||u*+tD) —u®)||, =0,
then there exists a subsequence of W that converges to a solution of the coupled
relations (20) and (21).

Proof. Since W is a bounded, there exists a subsequence {u(¥?) : i € N} such that
u*i) — 7 := (7,7) as i — oo. By item (ii), both the subsequences {u(**1) :i ¢ N}
converges to T as ¢ — co. Therefore, by choosing k := k; and letting ¢ — oo in (24),
we conclude that @ (i.e., (Z,7)) satisfies the coupled equations (20) and (21). O

Lemma 3.3. Let a, 3, p, A, o, and p be positive numbers, H be an m x n matrix,
1 be a proper conver function, and W be the sequence generated by the iterative
scheme (24). If u < o and p||H|]3 < p, then
(i) J(u*tD) < J(u®) for all k € N and the sequence {J(z™*)) : k € N} con-
verges.
(ii) the sequence W is bounded and limy_, o [|[u*TD) — u®) |5 = 0.

Proof. Notice that

x®) — LHTHR) 4 2Tk

k+1 k) _
Ryu™ D Rou® = | 0T ey iy (H)

Define ry(z) = 2|z — 2™ + %HT(HI'(k) —y®)|3 and ra(y) = glly — y® —
L(Hz®+D — ()12 From the definition of the proximity operator and (24), we
know that ®(z*t1D) 4 7 (2++D) < ®(2F) + 71 (2*) and U(yF+D) 4 ry(yk+D) <
U(y*) 4+ r2(y*). Summing the last two inequalities leads to

(27)

O (D) 4wy HY) o (2 FD) 4 () < (@) + U (YY) + 11 (@) + ().

A direct calculation shows that

P (D) =y @ 0) = Dol ) — o0 4 () =y, (0D — ),

and
ra(y* ) — ra(y ™)

o—p p p
Iy =y @G+ S HEETD — BV — DY D — y B,

From (27), (3), and the above two inequalities, we get
T 4 §la+D — g3 4 S5 g 01) — g2 B D) 0|2
< J(®) — B|Ha® —y®|3 — p(Ha® —y®), H@l+D) —y®))

which, by the cosine rule

1 1
(Hal® =y, H@+D = y00) = 2| Ha+) — 4|3 = 2| Ha — y |3

- Sl — a0

and the inequality
[Hz® D — Ha® |5 < || H|3]|l2*+D — =W,
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becomes
1 1
(28) J(u(’““))Jrg(P—MIIHII%)HSE(’””—ff(k)||§+§(0—u)\|y(k“)—y(k)H% < J(u®).

Since both ® and ¥ are bounded below, when p < o and p||H||2 < p inequality
(28) implies that item (i) holds, and the sequence {J(u*)) : k € N} is decreasing
and convergent. Hence, from inequality (28) again, we can further conclude that
item (ii) holds as well. O

Theorem 3.4. Let o, B, p, A, o, and p be positive numbers, let H be an m X n
matriz, let ¥ be a proper convex function on R™ and let VW be the sequence generated
by the iterative scheme (24). If p < o and p||H||3 < p, and J has only finite number
of critical points on R™ x R™ | then the sequence W converges to a critical point, say
(Z,9), of J. Moreover, if the number a given in (14) is positive and the parameters
a, B, and p satisfy H1 (with p in H1 being ap), then (Z,7) is a (local) minimizer
or a saddle (but not a (local) mazimizer) of J. In particular, if the first condition
of H1 holds, then (T,7) is a solution of model (3).

Proof. By Lemma 3.3 (i), the sequence W is bounded and limy_, [[ulFT1) —
u®|3 = 0. And by Lemma 3.2, there exists a subsequence {u*s : j € N} of W
converges to a solution of the coupled relations (20) and (21), denoted by @ := (T, 7).
Then the subsequence {u**! : j € N} also converges to w. By the iteration
scheme (26) and Lemma 3.1, we get that @ is a fixed-point of T o R. Therefore,
all accumulation points of sequence W are fixed-points of mapping 7 o R. Since
the number of critical points of J is finite on R™ x R™, we have that the number
of accumulation points of W is finite. Recalling the result of point set topology
that if W is bounded and limy o ||u*+1) — u®)|| = 0, the set of accumulations of
sequence W is connected, the sequence W has only one accumulation point. So, the
sequence W converges to U, the fixed-point of 7 o R. And then, we can complete
the proof by directly applying Proposition 3. O

4. Algorithm for the proposed model regularized by TV. In this section,
we restrict ourselves on the selections of ¥ (i.e., ¢) and H arising from the TV
norm [26] although many other selections, for example, ¢ is the ¢; norm and H is
a matrix from a tight framelet system, can be considered. For ease of exposition,
we assume the vector z € R™ is formed from a square image of size /n x /n by
sequentially concatenating the columns of the image.

Let D denote the y/n X v/n matrix defined by the equation

0
-1 1
D :=
-1 1
and choose H to be an m X n matrix with m = 2n given by
I -®D
— Vv

(29) H: { D&l ]

where I 5 is the \/n x \/n identity matrix and the notation P® @ denotes the Kro-

necker product of matrices P and Q. Tt is known in [21] that || H||3 = 8sin? %

(see, e.g., [21]). From the structure of H, one can easily get a = min{||H,||3:j =
1,2,...,n} =4.
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We further define ¢ : R™ — R in (7) at y € R™ as

n

(30) Y(y) = Z \/ ?ng' + y727,+7,'v

Jj=1
which is convex.

Lemma 4.1. Let «, 3, u, A are all positive numbers, if 1 is defined by (30) and H
is an 2n X n matriz, then the function J defined by (4) has only finite number of
critical points.

Proof. From the proof of Proposition 1, If a3* < %, J is strictly convex and
has only one critical point (i.e., the global minimizer) on R”™ x R™. So, it remains
to prove that J(z,y), (z,y) € R™ x R™ has only finite number of critical points for
aBft > %. To this end, we define

_ BV

1
g(w):zw—i—a(w 5 >7w€R+.

Direct computation shows that
V20 (z) = diag {g (e®/f;) :i=1,2,...,n}.

Then, if the positive numbers «, 3 satisfy the restriction af* > %, there exist
w1, we with 0 < wy < wy < 400 such that g(w) > 0 holds for w € (0,w1] U [wa, +00).
Let M := log(wy -inf; f;), Ma := log(ws-sup, f;). Let Qp := {z : z; € (—o0, M1],i =
1,2,...,n} and Qs :={x : 2; € [Ma,+00),i =1,2,...,n}. So, for any x € Q3 UQo,
we have V2®(z) > 0. Thus, ®(z) is strictly convex on each of 21 and s, separately.
This, together with the convexity of h and ¥, implies that J(x,y) is strictly convex
for (z,y) € Q1 x R™ and (z,y) € Q3 x R™, separately. As a result, function J has
totally no more than two critical points (i.e., local minimizers) on (2 U Q3) x R™.

On the other hand, let  := R™\(Q; U ). It is clear that the set Q x R™ is
convex. If (z,y) € Q x R™ is a critical point of J, then 0 € 8.J(x,y), which can be
equivalently written as

(31) 0=Vo(z)+pH" (Hz —y),
(32) 0. ply — Ha) + M0(y) = S (He —y) € D(y).

Let §; := [yi,Ynsi] . We consider the subdifferential of 1 defined by (30) at y :=
(y;) € R™, which, for i = 1,2,...,n, is as follows.

) 0/l ifg; #0
(33) (I~ 1l2) (i) = { {viveR? |vlls <1} if g =0.
Let d := Hz —y and d; := [di,dny1]",i € {1,...,n}. By (32) and (33), if ; = 0,
then
[Hali, [Hal, ;)" € {v:v e R, Jlolla < M u}

and
d; = [[Hal;, [Hal,,,]";
otherwise,
_ A o Hel 1T
oy i~ (s ) [l
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and thus

. \ o
i = e T e (el

n4+1 ‘2

If §; # 0, due to V®(z) =1 — PLL + a(? — 5,/67'”) being an exponent-based

function, equation (31) with respect to = has a finite number of roots on €; hence,
by relation (32), there are finite number of corresponding y-solutions. The finite
number of solutions of the coupled equations (31) and (32) on © x R™, together
with the fact that there are at most two critical points for J on (25 U Q2) x R™,
implies that J(z,y), (x,y) € R™ x R™ has only finite number of critical points. This
completes the proof. O

We remark that the above Lemma 4.1 also holds for many other popular selections
of ¢ and H, e.g., ¥ being the ¢; norm and H being a matrix from a tight framelet
system.

Theorem 4.2. Let o, B, p, A\, o, and p be positive numbers, H be an 2n x n
matriz, and W be the sequence generated by the iterative scheme (24). If up < o and
pl[H|3 < p, and ¢ is a proper convex function defined by (30), then the sequence
W converges to a critical point, say (T,7), of J in model (3). Moreover, if a given
in (14) is positive and the parameters «, B, and p satisfy H1 (with letting p in H1
be ap), then (T,7) is a (local) minimizer or a saddle (but not a (local) maximizer)
of J. In particular, if the first condition of H1 holds, then (T,y) is a solution of
model (3).

Proof. The result can be readily obtained by Lemma 4.1 and Theorem 3.4. O

In summary, based on the iterative scheme (24) and Theorem 4.2, we end up
with Algorithm 1 for model (3).

Algorithm 1 Fixed-point algorithm based on the proximity operators for model
(3)-
Input: noisy image f > 0 in R™; parameters A > 0, pu, 8> 1; a > 0,
Initialization: 2(®) and y(®) = 0; positive numbers o and p such p < o and

P - 2 (vn—D)m
m > 8sin S

repeat

(a) z(k+1) prox%q)(m(k) - %HT(H.I'(k) —y)),

(b) y* ) proxa, (y*) + &(HaBH) —y ),
until converges or satisfies a stopping criteria.
Write the output of (*+1) from the above iteration as Z.
The restored image is u* = e=.

Implementing Algorithm 1 requires the availability of a convenient way of cal-
culating the two proximity operators, proxigs and proxa,,. Firstly, we present the

explicit form of Prox . For w e R™ if v = prox%w(w), then

Vs A w;
{ ] =max{ 1 — ,0 { } .
Vitm/2 g \/ wi2 + wi2+m/2 Witm/2
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Secondly, we describe an algorithm to evaluate the operator proxig at x € R™.
Let u = proxi (). Then by the definition of the proximity operator, pz is a solution
of the followi;g equation

p(z —x)+ Ve(z) =0.
For the parameters «, 3, and p fulfilling assumption H1, the above equation has
a unique solution by Lemma 2.2; thus we can determine the solution efficiently by
Newton’s method.

5. A review of several existing models. To prepare a comparison study on the
performance of our proposed model (3) for multiplicative noise removal with exist-
ing models in the next section, several state-of-the-art models and the associated
algorithms will be briefly reviewed in this section. The models included in our study
are the DZ model in [11], the TwL-mV model in [17], the I-DIV model in [29], and

the HMNZ model in [14].
The DZ model reads as follows
2
u
- -1
Vi1,

(35) Héln <logu + = f > +a + Mp(Hu),

where a > %, A>0 X :={ueR":u>0and (u,1) = (f,1)}, H and ¢
are given by (29) and (30), respectively. This model was solved by a primal-dual
algorithm: Set an initial estimate (7(®,u(®, p®) € R™ x R™ x R?", iterate for
k=0,1,...

pltD) — argn;in Na® Hp) + 25p — ™3,
peE

2
= argmin <logu+ 5, 1> +a Hﬁ— lH
ucX 2
FMu, H pH D) 4 ooflu — u®|3,
gk = 9y (k+1) _ 4y (R)

(36) u(k+1)

where Y := {¢q € R* : maxjen, \/¢? + ¢?,,, < 1}. The vector pF*+1) is actually the

projection of p®) + \GHT*) onto the convex set Y, which can be easily obtained. As
suggested in [11], the vector u* 1) was approximated by using the Newton method
following with one projection step onto the convex set X.

The TwL-mV model in [17] is a two-level relaxation of the mV model (see [32])
by using the mth root transformation [32] and the concave conjugate. It is

1 1
(v*,a*) = argmin —(a,v®) — —(mloga — %, 1) + \Y(Hv),
(37) ve WT,a>0 5 § v
u* — (/U*)m7
where A >0, m > 1, s > 1, U := [¢,C]*, and VU = [ /e, ¥/CO]" with both ¢ and
C being positive, H and 1 are given by (29) and (30), respectively.. The following
algorithm was suggested for solving (37) in [17],
aF+l) = argmin ¢ < (v (k)) ) — . 2(loga,1),
a>0
(38) v+ = argmin X (a (k1) ps) + (Uim, 1) + A\ (Hv).
ve VU
It is easy to see that aF+1) = ty- The update v**+1) is approximated by the
following iterative scheme
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(39)
D) = Proj (v(k,a —p(a®+D) @ (uk0)s=1 _ ((% i Hpr,e))) ,
2(b6+1) = prox s (Ho(ke+1) — Lp(k0)
p(k:,@-i-l) — Z(kvé)a_i_ a(z(k7€+1) — Hv(ka‘€+1))7

where Proj =/ is the projection operator onto the set U and 1 < £ < T for a
pre-given positive integer 7. The output v»T+1 will be considered as v**1) in
the second step of (38).

The I-DIV model in [29] reads as

(40) min {(u — flogu, 1) + M(Hu),u € R},

where A > 0, H and v are given by (29) and (30), respectively. This model can be
equivalently written as

(41) min {(u—flogu, 1)+ \(p) : m _ [Iﬂ v}.

n RN R2N
(u,v,p) ERY XRY XR

2
k

(k+1)
(%
by

= argmin
veERY

+8

The model above is solved by using the alternating direction method of multipliers
(ADMM) in the following way:
I u(®)
[ =[],
u ) | ;
[ (k+1):| = argmin {(u — flogu,1) + A¢(p)
p uERimER?”
" {I] (k+1) {U]
+ v - )
I w1
D — ) 4 [H} 1) {p(m)]

The HMNZ method in [14] is a learned dictionary based de-speckling method.
The first phase of the method is to learn a dictionary by using the K-SVD method.
Let D be the learned dictionary obtained from log f, R;; € RI*™ is the matrix
corresponding to the extraction of the patch located in (4,j), and Dea; ; be the
sparse dictionary representation obtained for each patch R; ;log f. Define

1 1

G0)i= 5 {mto-+ 1) 4 5Wo0) — 010 |

where A\, > 0, and W = 3=, RIR; j,M = 3, . R; jDa; j. Then the second
phase is to solve the following variational model:

v* = argmin \{G(v) + ¥(Hv)},
(43) veR™

u=e",
where H and ¢ are given by (29) and (30), respectively. And the model can be
solved by using Chambolle-Pock algorithm in the following way:

P = argmin {—(p, Vo) + B|p — p® |2},

Ipllo <1
(44) v* D = argmin {Gv) - (divp+D) ) + B|lv — v(k)HQ} ,
yeR™
1) — 2;(k+1) _o®

INVERSE PROBLEMS AND IMAGING VoLUME 11, No. 6 (2017), 949-974



MULTIPLICATIVE NOISE REMOVAL WITH A SPARSITY-AWARE OPTIMIZATION MODEL 965

FIGURE 1. Five gray-level test images. (a) “Cameraman” (512 x
512). (b) “Lena” (512 x 512). (c) “Peppers” (512 x 512). (d)
“Remotel” (768 x 574). (e) “Remote2” (632 x 540).

6. Experiments. In this section, we illustrate the effectiveness of the proposed
model (3) and the corresponding algorithm (i.e., Algorithm 1) in producing high-
quality images for images corrupted by multiplicative noise. In our experiments,
we use test images of “Cameraman”, “Lena”, “Peppers” with size of 512 x 512,
“Remotel” with size of 768 x 574 and “Remote2” with size of 632 x 540, as shown
in Fig. 1. To generate the observed images f in (1), we degrade the original test
images by multiplicative Gamma noise at various noise-levels.

TABLE 1. Parameter values in our algorithm (Algorithm 1) at var-
ious noise levels.

A o E] H 4 o
L =10 || 0.306 | 0.0015 6.06 30 | 250 150
L=6 0.406 | 0.00085 15.02 | 30 | 250 150
L=4 0.506 | 0.000108 250 30 | 255.5 | 90.26
L=2 0.8 0.00001 | 1655.05 | 30 | 290 | 156.26

¢

In order to have a through comparison of the performance of the proposed
model (3) and the corresponding algorithm, we will compare our method with some
state-of-the-art methods, the DZ method in [11], the TwL-mV method in [17], the
HMNZ method in [14] (which remarkably outperforms the BS [5], DFN [12], DRSM
[29], and NL [30] methods in terms of the quality of the restored images, as dis-
cussed in [14]) and the I-DIV method in [29]; and these four methods were reviewed
shortly in the previous section. All the algorithms are performed under Windows 7
using MATLAB 7.0(R14) on a Intel Dual-Core i5-4570 CPU 3.20 GHz PC with 4.0G
RAM memory. The execution time required in each method is measured by seconds.
We terminate the tested algorithms when [Ju*+1) —u®) ||y /||ut®)||s < 3x 107, Here
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u®) is the resulting image of the kth iteration produced by the underlying algo-
rithm. The quality of the results is evaluated in terms of the peak signal-to—signal
ratio (PSNR) in dB as

255%n
PSNR = 10log; <|17— u*%) ,
where u is the original image with n the total number of pixels and u* is the
recovered image by a testing algorithm.

Two types of experiments are designed. Experiment 1 will discuss the influence
of initialization (%) for the performance of our proposed Algorithm 1. Experiment
2 will focus on the comparison of our proposed model (3) with others, namely, the
DZ, TwL-mV, HMNZ and I-DIV methods.

6.1. Experiment 1. In this subsection, we present a numerical study on how an
initial estimate z(9) affects the performance of our Algorithm 1.

TABLE 2. Parameter values for all testing algorithms.

L Method A a B " P o

10 | Ours 0.569 1.0002 1.00053 20.1 425.5 | 20.140
TwL-4V || 3.6/L 1.0 — — 0.3 —
I-DIV 0.31 378.0 — — — —
DZ 0.07 19 3.0 3.0 — —
HMNZ 0.1 — 10 17.5 — —

6 Ours 0.555 0.3885 1.005 19.6 285.5 | 19.667
TwL-4V || 2.9/L 1.0 — — 0.29 —
I-DIV 0.45 918.0 — — — —
DZ 0.06 3.8 3.0 3.0 — —
HMNZ 0.1 — 10 9 — —

4 Ours 0.659 0.18515 1.0105 29.658 | 255.5 | 29.918
TwL-4V || 2.4/L 1.0 — — 0.3
I-DIV 0.55 658.0 — — — —
DZ 0.05 1.59 3.0 3.0 — —
HMNZ 0.1 — 10 6 — —

2 Ours 0.8 0.000001 115.0 21.0 168 26.26
TwL-4V || 1.8/L 1.0 — — 0.3 —
I-DIV 0.84 1059.0 — — — —
DZ 0.065 0.45 3.0 3.0 — —
HMNZ 0.1 — 10 1.5 — —

We first choose the test image of “Cameraman” and degrade it by multiplicative
noise with noise levels L = 10, 6, 4, and 2. For each noise level, the following four
different initializations are considered: (i) z(9) = log(f); (ii) (¥ = log(MEAN(f));
(iii) (9 = log(DZ(f)); and (iv) =(©) = log(SAR-BM3D(f)). The choice of z(9) =
log(f) is typical since the observation f is supposed to be close to the desired image.
The image MEAN(f) is the result of f filtered by the 5 x 5 average filter. The image
DZ(f) is the denoised image from the DZ model. Finally, the image SAR-BM3D(f)
is the denoised image by the SAR-BM3D method [25]. We note that the BM3D
represents the state-of-the-art algorithm for recovering images affected by white
Gaussian noise [6] and SAR-BM3D is a new version of BM3D which is adapted to
denoise SAR images by taking into account their peculiar features. By using z(?) =
log(f) as the initial estimate, the parameters involved in Algorithm 1 are chosen
differently for multiplicative noise at different levels to obtain the convergently
stable PSNR values as high as possible. The values of these parameters are listed
in Table 1. With these parameters, we can readily verify that model (3) is convex
for L = 10 and 6, but is nonconvex for L = 4 and 2. Fig. 2 illustrates the curves of
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FIGURE 2. (a) PSNR versus number of iterations. (b) Relative
error versus number of iterations. Here, various z(@s are used as
initial estimates in Algorithm 1. From top to bottom: the test
images are the degraded “Cameraman” with multiplicative noise
at levels L = 10, 6, 4, and 2.

PSNR values of the updates (column (a)) and the relative errors (column (b)) with
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FIGURE 3. (a) PSNR versus number of iterations for L = 4. (b)
PSNR versus number of iterations for L = 2. Here, various z(9s
are used as initializations in Algorithm 1 for the degraded “Cam-
eraman” with multiplicative noise.

respect to the number of iterations at noise levels L = 10, 6, 4, and 2 (from top to
bottom). It is not surprise that at noise level L = 10 and 6 with sufficient number of
iterations Algorithm 1 with the four different initial estimates produces the restored
images of similar quality in terms of PSNR values. For L = 4 and 2, with the above
four different initializations of 2(%), Algorithm 1 also generates the restored images
of similar quality in terms of PSNR values (see the third and fourth subfigures of
Fig. 2(a)) even though model (3) is nonconvex. It can be observed that the curves
of PSNR values associated with the initialization 2(*) = log(SAR-BM3D(f)) always
have clear peaks in comparison with the other three initializations, z(©) = log(f),
() = log(MEAN(f)) and (9 = log(DZ(f)). The relative errors corresponding to
these peaks are 2.1x 1074, 1.1x 1074, 8.4x 107°, and 6.5x 10~° for L = 10, 6, 4, and
2, respectively. In addition, we also test the influence of other three initializations
(0 = log(TwL-4V(f)), (9 = log(I-DIV(f)) and z(®) = log(HMNZ(f)) on our
Algorithm 1. Here TwL-4V(f), I-DIV(f) and HMNZ(f) are the denoised images
from the TwlL-4V, I-DIV and HMNZ methods, respectively. We observe that the
PSNR-curves associated with those initializations for different noise levels are absent
of peaks that are higher than the final stable values.

Recall that for L = 4 and 2, model (3) may be nonconvex with the parameters in
Table 1. According to Theorem 4.2, Algorithm 1 may converge to a local minimizer
or a saddle, but not a local maximizer of J. To this end, three different initializa-
tions, z(?) = 100nes(size(f)), (°) = 150nes(size(f)), £(*) = 500nes(size(f)) for L =
4 and two different initializations, 2(°) = 150nes(size(f)), (®) = 500nes(size(f))
for L = 2 are tested. Here ones(size(f)) is the matrix whose entries are ones and
has the same size as f. Fig. 3 illustrates the curves of PSNR values of the up-
dates against the number of iterations. One can see that for L = 4, Algorithm 1
with 2(*) = 10ones(size(f)) converges to a stable PSNR of -47.43 dB while Al-
gorithm 1 with 2(*) = 150nes(size(f)) and (%) = 500nes(size(f)) converges to a
stable PSNR of -84.52 dB; for L = 2, Algorithm 1 with 2(®) = 150nes(size(f)) and
2(©) = 500nes(size(f)) uniformly converges to a stable PSNR of -122.58 dB. All
stable PSNR values for L = 4 and 2 are different from the stable values in the third
and fourth subfigures of Fig. 2(a), respectively. These results confirm that J with
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FIGURE 4. (a) PSNR versus number of iterations. (b) Relative er-
ror versus number of iterations. Here, two different 2(9s are used as
initial estimates in Algorithm 1. The solid lines are plotted firstly
by selecting the parameters of Algorithm 1 to obtain (nearly) op-
timal PSNR values (marked by ‘o’) under the prescribed tolerance
TOL = 3 x 10™%; then the dashed lines are plotted by using the
same parameters as those of corresponding solid lines. The test
images are the degraded “Cameraman” with multiplicative noise
at various noise levels (L = 10, 6, 4, and 2).

the parameters in Table 2 has more than one critical points for L = 4 and 2; and
the restored images may be sensitive to the selected initial estimates. Experimen-
tally, we find that, for L = 4,2, if the value of each entry of z(?) is restricted to
the interval (—oo, log 255], Algorithm 1 can consistently converge to their respective
fixed stable PSNR values as shown in the third and fourth subfigures of Fig. 2(a).

6.2. Experiment 2. Motivated by the observations in our first experiment, we
use log(SAR-BM3D(f)) as the initial estimate and re-select the parameters for
Algorithm 1 to make the PSNR value of a restored image as high as possible under
the prescribed tolerance TOL = 3 x 10~%. These parameters are listed in Table 2.
For the purpose of illustration, the solid lines record the PSNR value (in Fig. 4(a))
and the relative error (in Fig. 4(b)) of the denoised image at each iteration for
different noise-levels, L = 10, 6, 4, and 2 up to the first 12000 iterations. Algorithm 1
actually terminates with the PSNR values of 30.15 dB, 28.53 dB, 27.38 dB and 25.47
dB (marked by ‘o’) for L = 10, 6, 4, and 2 respectively, when the stopping criteria
is met. The PSNR values are almost the same as the values of the upmost points of
the respective lines. For a comparison purpose, the curves (dashed lines) in Fig. 4
are generated from Algorithm 1 with log(f) as the initial estimate.

Table 3 reports the PSNR values of the noisy images restored through our pro-
posed Algorithm 1 with using log(SAR-BM3D(f)) as the initial estimate, the I-DIV
method, the DZ method, the TwL-4V method, the HMNZ method, and SAR-BM3D
for multiplicative noise removal. Correspondingly, Table 2 lists the values of param-
eters for our method, the I-DIV method, the DZ method, the HMNZ method, and
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TABLE 3. PSNR (dB) and CPU time (s) for I-DIV [29], DZ [11],
TwL-4V [17], HMNZ [14], our algorithm (Algorithm 1 with 2(®) =
log(SAR-BM3D(f))), and SAR-BM3D [25] for test images of Fig. 1
corrupted by multiplicative noise with L = 10, 6,4, 2, respectively.

Image L Noisy | I-DIV DZ TwL-4V | HMNZ Ours SAR-BM3D
Camer. | 10 | PSNR || 15.61 | 28.69 28.30 28.83 29.96 30.15 28.89
Time — 6.28 86.30 6.23 66.62 117.35+6.03 117.35
6 PSNR || 13.39 | 27.35 26.93 27.59 28.46 28.53 26.35
Time — 11.40 | 110.36 7.33 62.86 116.59+10.11 116.59
4 PSNR || 11.64 | 26.52 25.85 26.72 27.33 27.38 23.67
Time — 13.57 | 149.54 7.94 63.69 118.31+13.31 118.31
2 PSNR 8.63 24.98 24.27 25.28 25.30 25.47 16.45
Time — 15.57 | 190.75 9.72 62.58 124.30+15.20 124.30
Lena 10 | PSNR 15.64 28.47 27.51 28.60 29.41 29.65 28.48
Time — 6.57 85.90 6.85 65.15 118.64+6.33 118.64
6 PSNR 13.42 27.34 26.24 27.48 28.07 28.14 25.92
Time — 12.06 | 106.87 7.29 63.69 116.62+10.42 116.62
4 PSNR || 11.68 | 26.64 25.45 26.72 27.01 27.37 23.63
Time — 13.78 | 144.34 8.48 63.03 118.32+13.14 118.32
2 PSNR 8.71 25.07 24.01 25.17 25.21 25.50 16.46
Time - 17.16 181.92 10.73 62.88 124.56+15.71 124.56
Pepp. 10 | PSNR || 15.93 | 28.83 27.20 28.86 29.13 29.53 28.09
Time — 6.88 84.15 7.47 65.33 116.86+5.62 116.86
6 PSNR || 13.70 | 27.95 26.15 27.92 28.12 28.51 25.78
Time — 12.46 | 108.44 8.16 60.54 118.31+10.24 118.31
4 PSNR || 11.98 | 27.10 25.10 27.05 27.14 27.76 23.63
Time — 13.30 145.13 8.54 63.75 119.16+12.90 119.16
2 PSNR 8.93 25.57 | 23.72 25.54 25.52 25.97 16.45
Time — 17.44 | 188.50 10.59 61.59 115.714+15.03 115.71
Rem.1 10 | PSNR || 16.27 | 25.22 25.15 25.33 26.16 26.21 25.43
Time — 12.94 | 190.94 12.78 108.13 | 210.80+11.14 210.80
6 PSNR 14.00 24.17 24.01 24.41 25.02 25.07 23.64
Time — 23.09 | 222.15 13.63 102.92 | 211.024-23.01 211.02
4 PSNR 12.28 23.48 23.01 23.68 24.03 23.98 22.20
Time — 27.56 | 286.88 14.95 105.97 | 211.004-26.75 211.00
2 PSNR 9.28 22.39 21.80 22.57 22.63 22.76 16.45
Time — 32.09 | 347.21 17.75 99.72 [ 211.89+28.51 211.89
Rem.2 10 | PSNR 16.23 25.56 25.59 25.63 26.76 26.69 25.92
Time — 9.16 144.40 9.58 84.96 163.004-8.90 163.00
6 PSNR 14.02 24.55 24.30 24.45 25.25 25.43 24.07
Time — 17.46 | 164.92 9.94 85.24 | 162.70+17.03 162.70
4 PSNR || 12.27 | 23.45 23.38 23.63 23.93 24.26 22.26
Time — 22.75 | 219.99 11.79 78.15 163.07+20.35 163.07
2 PSNR 9.22 22.01 21.86 22.18 22.12 22.72 16.08
Time — 25.86 | 271.57 14.01 75.17 162.84+-24.02 162.84

the TwL-4V method at various noise levels. We can see that our method outper-
forms the other five state-of-the-art methods in terms of PSNR values. Especially
for the low level noisy case L = 10, it is significantly superior to the I-DIV method,
the DZ method, the TwL-4V method and the SAR-BM3D, about 1.0 dB. We remark
that unlike the formulation of multiplicative noise in model (3), the DZ model, the
TwL-4V model, the I-DIV model and HMNZ model, the multiplicative noise model
discussed in SAR-BM3D [25] follows a square-root Gamma distribution. This is the
reason why the PSNR values of the noisy images at various noise levels in Table 3
in present paper are inconsistent with those in Table I in [25] (eg. see the results of
“Lena” image in both tables). When focusing on the CPU time of the algorithms
in Table 3, we see that our Algorithm 1 is time consuming in comparison with
the other four methods. It is due to the fact that the total execution time of our
Algorithm 1 consists of two components: the time for initializing z(®) by running
SAR-BM3D on f and the subsequent time for the developed fixed-point iterative
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scheme, as listed in Algorithm 1; and the SAR-BM3D holds a large proportion of
the time while the fixed-point iterative scheme is very fast.

For visual comparisons, the denoised images of “Cameraman” and “Remotel”
by various methods are displayed in Figs. 5 and 6. We observe that the restored
images by our proposed method have less artifacts than those by I-DIV, DZ, TwL-
4V and HMNZ, can keep sharp edges and fine details (e.g., see the background and
the remote columnar building in “Cameraman” image).

7. Conclusion. This paper introduces a new variational model for multiplicative
noise removal by exploring approximate sparsity of underlying images. In order to
solve the proposed model, we first study the convexity of the objective function
of the model. We give the conditions that can ensure the convexity of the model.
And then we relax the conditions such that the model may be nonconvex; and
we show that the critical points of the objective function of the (noncovex) model
can be viewed as the solutions of a coupled fixed-point equations in terms of the
proximity operators. In particular, under certain conditions, we show that the
global minimizer of the model is a solution of the fixed-point equations. Based on
the fixed-point equations, an proximity algorithm is developed; and we prove that
the sequence generated from the algorithm converges to one of the critical points
of the the objective function of the model for some specific cases. Furthermore, We
examine the suitability of the model and the corresponding algorithm for restoring
images contaminated by multiplicative noise. Our numerical results indicate that
our method evidently performs better than existing state-of-the-art methods in
terms of PSNR values.
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FI1GURE 5. Results of various denoising methods on “Cameraman”
image corrupted by multiplicative noise with L = 2 (the first col-
umn) and L = 4 (the second column). From top to bottom: Noisy
images (8.63 dB, 11.64 dB), DZ (24.27 dB, 25.85 dB), TwL-4V
(25.28 dB, 26.72dB), I-DIV (24.98 dB, 26.52 dB), HMNZ (25.30
dB, 27.33 dB), and Ours (25.47 dB, 27.38 dB).
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FIGURE 6. Results of various denoising methods on “Remotel”
image corrupted by multiplicative noise with L = 2 (the first col-
umn) and L = 4 (the second column). From top to bottom: Noisy
images (9.28 dB, 12.28 dB), DZ (21.80 dB, 23.01 dB), TwL-4V
(22.57 dB, 23.68 dB), I-DIV (22.39 dB, 23.48 dB), HMNZ (22.63
dB, 24.03 dB), and Ours (22.76 dB, 23.98 dB).

INVERSE PROBLEMS AND IMAGING VoLUME 11, No. 6 (2017), 949-974



	Old Dominion University
	ODU Digital Commons
	2017

	Multiplicative Noise Removal with a Sparsity-Aware Optimization Model
	Jian Lu
	Lixin Shen
	Chen Xu
	Yuesheng Xu
	Repository Citation
	Original Publication Citation


	1. Introduction
	2. Proposed model and its characterization
	2.1. Model
	2.2. Properties
	2.3. Characterizations

	3. Convergence analysis
	4. Algorithm for the proposed model regularized by TV
	5. A review of several existing models
	6. Experiments
	6.1. Experiment 1
	6.2. Experiment 2

	7. Conclusion
	Acknowledgments
	REFERENCES

