1,165 research outputs found

    Local symmetry dynamics in one-dimensional aperiodic lattices

    Get PDF
    A unifying description of lattice potentials generated by aperiodic one-dimensional sequences is proposed in terms of their local reflection or parity symmetry properties. We demonstrate that the ranges and axes of local reflection symmetry possess characteristic distributional and dynamical properties which can be determined for every aperiodic binary lattice. A striking aspect of such a property is given by the return maps of sequential spacings of local symmetry axes, which typically traverse few-point symmetry orbits. This local symmetry dynamics allows for a classification of inherently different aperiodic lattices according to fundamental symmetry principles. Illustrating the local symmetry distributional and dynamical properties for several representative binary lattices, we further show that the renormalized axis spacing sequences follow precisely the particular type of underlying aperiodic order. Our analysis thus reveals that the long-range order of aperiodic lattices is characterized in a compellingly simple way by its local symmetry dynamics.Comment: 15 pages, 12 figure

    Alternating subgroups of Coxeter groups

    Get PDF
    We study combinatorial properties of the alternating subgroup of a Coxeter group, using a presentation of it due to Bourbaki.Comment: 39 pages, 3 figure

    A note on palindromicity

    Full text link
    Two results on palindromicity of bi-infinite words in a finite alphabet are presented. The first is a simple, but efficient criterion to exclude palindromicity of minimal sequences and applies, in particular, to the Rudin-Shapiro sequence. The second provides a constructive method to build palindromic minimal sequences based upon regular, generic model sets with centro-symmetric window. These give rise to diagonal tight-binding models in one dimension with purely singular continuous spectrum.Comment: 12 page

    Palindromic complexity of infinite words associated with simple Parry numbers

    Get PDF
    A simple Parry number is a real number \beta>1 such that the R\'enyi expansion of 1 is finite, of the form d_\beta(1)=t_1...t_m. We study the palindromic structure of infinite aperiodic words u_\beta that are the fixed point of a substitution associated with a simple Parry number \beta. It is shown that the word u_\beta contains infinitely many palindromes if and only if t_1=t_2= ... =t_{m-1} \geq t_m. Numbers \beta satisfying this condition are the so-called confluent Pisot numbers. If t_m=1 then u_\beta is an Arnoux-Rauzy word. We show that if \beta is a confluent Pisot number then P(n+1)+ P(n) = C(n+1) - C(n)+ 2, where P(n) is the number of palindromes and C(n) is the number of factors of length n in u_\beta. We then give a complete description of the set of palindromes, its structure and properties.Comment: 28 pages, to appear in Annales de l'Institut Fourie

    Factor versus palindromic complexity of uniformly recurrent infinite words

    Get PDF
    We study the relation between the palindromic and factor complexity of infinite words. We show that for uniformly recurrent words one has P(n)+P(n+1) \leq \Delta C(n) + 2, for all n \in N. For a large class of words it is a better estimate of the palindromic complexity in terms of the factor complexity then the one presented by Allouche et al. We provide several examples of infinite words for which our estimate reaches its upper bound. In particular, we derive an explicit prescription for the palindromic complexity of infinite words coding r-interval exchange transformations. If the permutation \pi connected with the transformation is given by \pi(k)=r+1-k for all k, then there is exactly one palindrome of every even length, and exactly r palindromes of every odd length.Comment: 16 pages, submitted to Theoretical Computer Scienc

    Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    Full text link
    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. By the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of random nature, and a complete chromosome DNA sequence exhibits the properties of deterministic chaos.Comment: 4 pages, 5 figure

    Palindromic complexity of trees

    Full text link
    We consider finite trees with edges labeled by letters on a finite alphabet Σ\varSigma. Each pair of nodes defines a unique labeled path whose trace is a word of the free monoid Σ\varSigma^*. The set of all such words defines the language of the tree. In this paper, we investigate the palindromic complexity of trees and provide hints for an upper bound on the number of distinct palindromes in the language of a tree.Comment: Submitted to the conference DLT201
    corecore