72 research outputs found

    Reduced Complexity Sphere Decoding

    Full text link
    In Multiple-Input Multiple-Output (MIMO) systems, Sphere Decoding (SD) can achieve performance equivalent to full search Maximum Likelihood (ML) decoding, with reduced complexity. Several researchers reported techniques that reduce the complexity of SD further. In this paper, a new technique is introduced which decreases the computational complexity of SD substantially, without sacrificing performance. The reduction is accomplished by deconstructing the decoding metric to decrease the number of computations and exploiting the structure of a lattice representation. Furthermore, an application of SD, employing a proposed smart implementation with very low computational complexity is introduced. This application calculates the soft bit metrics of a bit-interleaved convolutional-coded MIMO system in an efficient manner. Based on the reduced complexity SD, the proposed smart implementation employs the initial radius acquired by Zero-Forcing Decision Feedback Equalization (ZF-DFE) which ensures no empty spheres. Other than that, a technique of a particular data structure is also incorporated to efficiently reduce the number of executions carried out by SD. Simulation results show that these approaches achieve substantial gains in terms of the computational complexity for both uncoded and coded MIMO systems.Comment: accepted to Journal. arXiv admin note: substantial text overlap with arXiv:1009.351

    Joint signal detection and channel estimation in rank-deficient MIMO systems

    Get PDF
    L'évolution de la prospère famille des standards 802.11 a encouragé le développement des technologies appliquées aux réseaux locaux sans fil (WLANs). Pour faire face à la toujours croissante nécessité de rendre possible les communications à très haut débit, les systèmes à antennes multiples (MIMO) sont une solution viable. Ils ont l'avantage d'accroître le débit de transmission sans avoir recours à plus de puissance ou de largeur de bande. Cependant, l'industrie hésite encore à augmenter le nombre d'antennes des portables et des accésoires sans fil. De plus, à l'intérieur des bâtiments, la déficience de rang de la matrice de canal peut se produire dû à la nature de la dispersion des parcours de propagation, ce phénomène est aussi occasionné à l'extérieur par de longues distances de transmission. Ce projet est motivé par les raisons décrites antérieurement, il se veut un étude sur la viabilité des transcepteurs sans fil à large bande capables de régulariser la déficience de rang du canal sans fil. On vise le développement des techniques capables de séparer M signaux co-canal, même avec une seule antenne et à faire une estimation précise du canal. Les solutions décrites dans ce document cherchent à surmonter les difficultés posées par le medium aux transcepteurs sans fil à large bande. Le résultat de cette étude est un algorithme transcepteur approprié aux systèmes MIMO à rang déficient

    Effi cient algorithms for iterative detection and decoding in Multiple-Input and Multiple-Output Communication Systems

    Full text link
    This thesis fits into the Multiple-Input Multiple-Output (MIMO) communication systems. Nowadays, these schemes are the most promising technology in the field of wireless communications. The use of this technology allows to increase the rate and the quality of the transmission through the use of multiple antennas at the transmitter and receiver sides. Furthermore, the MIMO technology can also be used in a multiuser scenario, where a Base Station (BS) equipped with several antennas serves several users that share the spatial dimension causing interference. However, employing precoding algorithms the signal of the multiuser interference can be mitigated. For these reasons, the MIMO technology has become an essential key in many new generation communications standards. On the other hand, Massive MIMO technology or Large MIMO, where the BS is equipped with very large number of antennas (hundreds or thousands) serves many users in the same time-frequency resource. Nevertheless, the advantages provided by the MIMO technology entail a substantial increase in the computational cost. Therefore the design of low-complexity receivers is an important issue which is tackled throughout this thesis. To this end, one of the main contributions of this dissertation is the implementation of efficient soft-output detectors and precoding schemes. First, the problem of efficient soft detection with no iteration at the receiver has been addressed. A detailed overview of the most employed soft detectors is provided. Furthermore, the complexity and performance of these methods are evaluated and compared. Additionally, two low-complexity algorithms have been proposed. The first algorithm is based on the efficient Box Optimization Hard Detector (BOHD) algorithm and provides a low-complexity implementation achieving a suitable performance. The second algorithm tries to reduce the computational cost of the Subspace Marginalization with Interference Suppression (SUMIS) algorithm. Second, soft-input soft-output (SISO) detectors, which are included in an iterative receiver structure, have been investigated. An iterative receiver improves the performance with respect to no iteration, achieving a performance close to the channel capacity. In contrast, its computational cost becomes prohibitive. In this context, three algorithms are presented. Two of them achieve max-log performance reducing the complexity of standard SISO detectors. The last one achieves near max-log performance with low complexity. The precoding problem has been addressed in the third part of this thesis. An analysis of some of the most employed precoding techniques has been carried out. The algorithms have been compared in terms of performance and complexity. In this context, the impact of the channel matrix condition number on the performance of the precoders has been analyzed. This impact has been exploited to propose an hybrid precoding scheme that reduces the complexity of the previously proposed precoders. In addition, in Large MIMO systems, an alternative precoder scheme is proposed. In the last part of the thesis, parallel implementations of the SUMIS algorithm are presented. Several strategies for the parallelization of the algorithm are proposed and evaluated on two different platforms: multicore central processing unit (CPU) and graphics processing unit (GPU). The parallel implementations achieve a significant speedup compared to the CPU version. Therefore, these implementations allow to simulate a scalable quasi optimal soft detector in a Large MIMO system much faster than by conventional simuLa presente tesis se enmarca dentro de los sistemas de comunicaciones de múltiples antenas o sistemas MIMO. Hoy en día, estos sistemas presentan una de las tecnologías más prometedoras dentro de los sistemas comunicaciones inalámbricas. A través del uso de múltiples antenas en ambos lados, transmisor y receptor, la tasa de transmisión y la calidad de la misma es aumentada. Por otro lado, la tecnología MIMO puede ser utilizada en un escenario multiusuario, donde una estación base (BS) la cual está equipada con varias antenas, sirve a varios usuarios al mismo tiempo, estos usuarios comparten dimensión espacial causando interferencias multiusuario. Por todas estas razones, la tecnología MIMO ha sido adoptada en muchos de los estándares de comunicaciones de nueva generación. Por otro lado, la tecnología MIMO Masivo, en la cual la estación base está equipada con un gran número de antenas (cientos o miles) que sirve a muchos usuarios en el mismo recurso de tiempo-frecuencia. Sin embargo, las ventajas proporcionadas por los sistemas MIMO implican un aumento en el coste computacional requerido. Por ello, el diseño de receptores de baja complejidad es una cuestión importante en estos sistemas. Para conseguir esta finalidad, las principales contribuciones de la tesis se basan en la implementación de algoritmos de detección soft y esquemas de precodificación eficientes. En primer lugar, el problema de la detección soft eficiente en un sistema receptor sin iteración es abordado. Una descripción detallada sobre los detectores soft más empleados es presentada. Por otro lado, han sido propuestos dos algoritmos de bajo coste. El primer algoritmo está basado en el algoritmo Box Optimization Hard Detector (BOHD) y proporciona una baja complejidad de implementación logrando un buen rendimiento. El segundo de los algoritmos propuestos intenta reducir el coste computacional del conocido algoritmo Subspace Marginalization with Interference Suppression (SUMIS). En segundo lugar, han sido investidados detectores de entrada y salida soft (SISO, soft-input soft-output) los cuales son ejecutados en estructuras de recepción iterativa. El empleo de un receptor iterativo mejora el rendimiento del sistema con respecto a no realizar realimentación, pudiendo lograr la capacidad óptima. Por el contrario, el coste computacional se vuelve prohibitivo. En este contexto, tres algoritmos han sido presentados. Dos de ellos logran un rendimiento óptimo, reduciendo la complejidad de los detectores SISO óptimos que normalmente son empleados. Por el contrario, el otro algoritmo logra un rendimiento casi óptimo a baja complejidad. En la tercera parte, se ha abordado el problema de la precodificación. Se ha llevado a cabo un análisis de algunas de las técnicas de precodificación más usadas. En este contexto, se ha evaluado el impacto que el número de condición de la matriz de canal tiene en el rendimiento de los precodificadores. Además, se ha aprovechado este impacto para proponer un precodificador hibrido. Por otro lado, en MIMO Masivo, se ha propuesto un esquema precodificador. En la última parte de la tesis, la implementación paralela del algoritmo SUMIS es presentada. Varias estrategias sobre la paralelización del algoritmo han sido propuestas y evaluadas en dos plataformas diferentes: Unidad Central de Procesamiento multicore (multicore CPU) y Unidad de Procesamiento Gráfico (GPU). Las implementaciones paralelas consiguen una mejora de speedup. Estas implementaciones permiten simular para MIMO Masivo y de forma más rápida que por simulación convencional, un algoLa present tesi s'emmarca dins dels sistemes de comunicacions de múltiples antenes o sistemes MIMO. Avui dia, aquestos sistemes presenten una de les tecnologies més prometedora dins dels sistemes de comunicacions inalàmbriques. A través de l'ús de múltiples antenes en tots dos costats, transmissor y receptor, es pot augmentar la taxa de transmissió i la qualitat de la mateixa. D'altra banda, la tecnologia MIMO es pot utilitzar en un escenari multiusuari, on una estació base (BS) la qual està equipada amb diverses antenes serveix a diversos usuaris al mateix temps, aquests usuaris comparteixen dimensió espacial causant interferències multiusuari. Per totes aquestes raons, la tecnologia MIMO ha sigut adoptada en molts dels estàndars de comunicacions de nova generació. D'altra banda, la tecnologia MIMO Massiu, en la qual l'estació base està equipada amb un gran nombre d'antenes (centenars o milers) que serveix a molts usuaris en el mateix recurs de temps-freqüència. No obstant això, els avantatges proporcionats pels sistemes MIMO impliquen un augment en el cost computacional requerit. Per això, el disseny de receptors de baixa complexitat és una qüestió important en aquests sistemes. Per tal d'aconseguir esta finalitat, les principals contribucions de la tesi es basen en la implementació d'algoritmes de detecció soft i esquemes de precodificació eficients. En primer lloc, és abordat el problema de la detecció soft eficient en un sistema receptor sense interacció. Una descripció detallada dels detectors soft més emprats és presentada. D'altra banda, han sigut proposats dos algorismes de baix cost. El primer algorisme està basat en l'algorisme Box Optimization Hard Decoder (BOHD) i proporciona una baixa complexitat d'implementació aconseguint un bon resultat. El segon dels algorismes proposats intenta reduir el cost computacional del conegut algoritme Subspace Marginalization with Interference Suppression (SUMIS). En segon lloc, detectors d'entrada i eixidia soft (SISO, soft-input soft-output) els cuals són executats en estructures de recepció iterativa han sigut investigats. L'ocupació d'un receptor iteratiu millora el rendiment del sistema pel que fa a no realitzar realimentació, podent aconseguir la capacitat òptima. Per contra, el cost computacional es torna prohibitiu. En aquest context, tres algorismes han sigut presentats. Dos d'ells aconsegueixen un rendiment òptim, reduint la complexitat dels detectors SISO òptims que normalment són emprats. Per contra, l'altre algorisme aconsegueix un rendiment quasi òptim a baixa complexitat. En la tercera part, s'ha abordat el problema de la precodificació. S'ha dut a terme una anàlisi d'algunes de les tècniques de precodificació més usades, prestant especial atenció al seu rendiment i a la seua complexitat. Dins d'aquest context, l'impacte que el nombre de condició de la matriu de canal té en el rendiment dels precodificadors ha sigut avaluat. A més, aquest impacte ha sigut aprofitat per a proposar un precodificador híbrid , amb la finalitat de reduir la complexitat d'algorismes prèviament proposats. D'altra banda, en MIMO Massiu, un esquema precodificador ha sigut proposat. En l'última part, la implementació paral·lela de l'algorisme SUMIS és presentada. Diverses estratègies sobre la paral·lelizació de l'algorisme han sigut proposades i avaluades en dues plataformes diferents: multicore CPU i GPU. Les implementacions paral·leles aconsegueixen una millora de speedup quan el nombre d'àntenes o l'ordre de la constel·lació incrementen. D'aquesta manera, aquestes implementacions permeten simular per a MIMO Massiu, i de forma més ràpida que la simulació convencional.Simarro Haro, MDLA. (2017). Effi cient algorithms for iterative detection and decoding in Multiple-Input and Multiple-Output Communication Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86186TESI

    Spectrally efficient multicarrier communication systems: signal detection, mathematical modelling and optimisation

    Get PDF
    This thesis considers theoretical, analytical and engineering design issues relating to non-orthogonal Spectrally Efficient Frequency Division Multiplexing (SEFDM) communication systems that exhibit significant spectral merits when compared to Orthogonal FDM (OFDM) schemes. Alas, the practical implementation of such systems raises significant challenges, with the receivers being the bottleneck. This research explores detection of SEFDM signals. The mathematical foundations of such signals lead to proposals of different orthonormalisation techniques as required at the receivers of non-orthogonal FDM systems. To address SEFDM detection, two approaches are considered: either attempt to solve the problem optimally by taking advantage of special cases properties or to apply sub-optimal techniques that offer reduced complexities at the expense of error rates degradation. Initially, the application of sub-optimal linear detection techniques, such as Zero Forcing (ZF) and Minimum Mean Squared Error (MMSE), is examined analytically and by detailed modelling. To improve error performance a heuristic algorithm, based on a local search around an MMSE estimate, is designed by combining MMSE with Maximum Likelihood (ML) detection. Yet, this new method appears to be efficient for BPSK signals only. Hence, various variants of the sphere decoder (SD) are investigated. A Tikhonov regularised SD variant achieves an optimal solution for the detection of medium size signals in low noise regimes. Detailed modelling shows the SD detector to be well suited to the SEFDM detection, however, with complexity increasing with system interference and noise. A new design of a detector that offers a good compromise between computational complexity and error rate performance is proposed and tested through modelling and simulation. Standard reformulation techniques are used to relax the original optimal detection problem to a convex Semi-Definite Program (SDP) that can be solved in polynomial time. Although SDP performs better than other linear relaxations, such as ZF and MMSE, its deviation from optimality also increases with the deterioration of the system inherent interference. To improve its performance a heuristic algorithm based on a local search around the SDP estimate is further proposed. Finally, a modified SD is designed to implement faster than the local search SDP concept. The new method/algorithm, termed the pruned or constrained SD, achieves the detection of realistic SEFDM signals in noisy environments

    Partial Detection for Multiple Antenna Cooperation

    Get PDF
    Multi-antenna relays can significantly increase the speed and reliability of wireless systems. However, because of the complexity of MIMO detection, there is considerable overhead in implementing a MIMO relay if the conventional detect-and-forward strategy is used. To address this challenge, we propose a novel cooperative partial detection (CPO) strategy that partitions the detection task between the relay and the destination. CPO leverages the structure of the tree-based c1ose-toML MIMO detectors, and modifies the tree traversal so that instead of visiting all the levels of the tree, only a subset of the levels, thus a subset of the transmitted streams, are visited. This novel approach reduces the tree levels, i.e. dimensions, in both the relay and the destination. Moreover, CPO provides a flexible method to control the level of partitioning between the relay and the destination, and thus, adjust the detection computational complexity in the relay and the destination. Monte-Carlo simulation results show that, under equal transmit power and complexity constraint in the destination, CPO achieves a better BER performance compared to the non-relay scenario, with limited computational overhead in the relay.NokiaNational Science Foundatio

    Energy Efficient VLSI Circuits for MIMO-WLAN

    Get PDF
    Mobile communication - anytime, anywhere access to data and communication services - has been continuously increasing since the operation of the first wireless communication link by Guglielmo Marconi. The demand for higher data rates, despite the limited bandwidth, led to the development of multiple-input multiple-output (MIMO) communication which is often combined with orthogonal frequency division multiplexing (OFDM). Together, these two techniques achieve a high bandwidth efficiency. Unfortunately, techniques such as MIMO-OFDM significantly increase the signal processing complexity of transceivers. While fast improvements in the integrated circuit (IC) technology enabled to implement more signal processing complexity per chip, large efforts had and have to be done for novel algorithms as well as for efficient very large scaled integration (VLSI) architectures in order to meet today's and tomorrow's requirements for mobile wireless communication systems. In this thesis, we will present architectures and VLSI implementations of complete physical (PHY) layer application specific integrated circuits (ASICs) under the constraints imposed by an industrial wireless communication standard. Contrary to many other publications, we do not elaborate individual components of a MIMO-OFDM communication system stand-alone, but in the context of the complete PHY layer ASIC. We will investigate the performance of several MIMO detectors and the corresponding preprocessing circuits, being integrated into the entire PHY layer ASIC, in terms of achievable error-rate, power consumption, and area requirement. Finally, we will assemble the results from the proposed PHY layer implementations in order to enhance the energy efficiency of a transceiver. To this end, we propose a cross-layer optimization of PHY layer and medium access control (MAC) layer
    • …
    corecore