3,506 research outputs found

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    Characterization of Spherical and Plane Curves Using Rotation Minimizing Frames

    Get PDF
    In this work, we study plane and spherical curves in Euclidean and Lorentz-Minkowski 3-spaces by employing rotation minimizing (RM) frames. By conveniently writing the curvature and torsion for a curve on a sphere, we show how to find the angle between the principal normal and an RM vector field for spherical curves. Later, we characterize plane and spherical curves as curves whose position vector lies, up to a translation, on a moving plane spanned by their unit tangent and an RM vector field. Finally, as an application, we characterize Bertrand curves as curves whose so-called natural mates are spherical.Comment: 8 pages. This version is an improvement of the previous one. In addition to a study of some properties of plane and spherical curves, it contains a characterization of Bertrand curves in terms of the so-called natural mate

    Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    Full text link
    We present a novel stereo vision algorithm that is capable of obstacle detection on a mobile-CPU processor at 120 frames per second. Our system performs a subset of standard block-matching stereo processing, searching only for obstacles at a single depth. By using an onboard IMU and state-estimator, we can recover the position of obstacles at all other depths, building and updating a full depth-map at framerate. Here, we describe both the algorithm and our implementation on a high-speed, small UAV, flying at over 20 MPH (9 m/s) close to obstacles. The system requires no external sensing or computation and is, to the best of our knowledge, the first high-framerate stereo detection system running onboard a small UAV

    A novel low-cost autonomous 3D LIDAR system

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2018To aid in humanity's efforts to colonize alien worlds, NASA's Robotic Mining Competition pits universities against one another to design autonomous mining robots that can extract the materials necessary for producing oxygen, water, fuel, and infrastructure. To mine autonomously on the uneven terrain, the robot must be able to produce a 3D map of its surroundings and navigate around obstacles. However, sensors that can be used for 3D mapping are typically expensive, have high computational requirements, and/or are designed primarily for indoor use. This thesis describes the creation of a novel low-cost 3D mapping system utilizing a pair of rotating LIDAR sensors, attached to a mobile testing platform. Also, the use of this system for 3D obstacle detection and navigation is shown. Finally, the use of deep learning to improve the scanning efficiency of the sensors is investigated.Chapter 1. Introduction -- 1.1. Purpose -- 1.2. 3D sensors -- 1.2.1. Cameras -- 1.2.2. RGB-D Cameras -- 1.2.3. LIDAR -- 1.3. Overview of Work and Contributions -- 1.4. Multi-LIDAR and Rotating LIDAR Systems -- 1.5. Thesis Organization. Chapter 2. Hardware -- 2.1. Overview -- 2.2. Components -- 2.2.1. Revo Laser Distance Sensor -- 2.2.2. Dynamixel AX-12A Smart Serial Servo -- 2.2.3. Bosch BNO055 Inertial Measurement Unit -- 2.2.4. STM32F767ZI Microcontroller and LIDAR Interface Boards -- 2.2.5. Create 2 Programmable Mobile Robotic Platform -- 2.2.6. Acer C720 Chromebook and Genius Webcam -- 2.3. System Assembly -- 2.3.1. 3D LIDAR Module -- 2.3.2. Full Assembly. Chapter 3. Software -- 3.1. Robot Operating System -- 3.2. Frames of Reference -- 3.3. System Overview -- 3.4. Microcontroller Firmware -- 3.5. PC-Side Point Cloud Fusion -- 3.6. Localization System -- 3.6.1. Fusion of Wheel Odometry and IMU Data -- 3.6.2. ArUco Marker Localization -- 3.6.3. ROS Navigation Stack: Overview & Configuration -- 3.6.3.1. Costmaps -- 3.6.3.2. Path Planners. Chapter 4. System Performance -- 4.1. VS-LIDAR Characteristics -- 4.2. Odometry Tests -- 4.3. Stochastic Scan Dithering -- 4.4. Obstacle Detection Test -- 4.5. Navigation Tests -- 4.6. Detection of Black Obstacles -- 4.7. Performance in Sunlit Environments -- 4.8. Distance Measurement Comparison. Chapter 5. Case Study: Adaptive Scan Dithering -- 5.1. Introduction -- 5.2. Adaptive Scan Dithering Process Overview -- 5.3. Coverage Metrics -- 5.4. Reward Function -- 5.5. Network Configuration -- 5.6. Performance and Remarks. Chapter 6. Conclusions and Future Work -- 6.1. Conclusions -- 6.2. Future Work -- 6.3. Lessons Learned -- References

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account
    • …
    corecore