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Abstract
To aid in humanity’s efforts to colonize alien worlds, NASA’s Robotic Mining Competition pits 

universities against one another to design autonomous mining robots that can extract the materials 
necessary for producing oxygen, water, fuel, and infrastructure. To mine autonomously on the 
uneven terrain, the robot must be able to produce a 3D map of its surroundings and navigate around 
obstacles. However, sensors that can be used for 3D mapping are typically expensive, have high 
computational requirements, and/or are designed primarily for indoor use. This thesis describes 
the creation of a novel low-cost 3D mapping system utilizing a pair of rotating LIDAR sensors, 
attached to a mobile testing platform. Also, the use of this system for 3D obstacle detection and 
navigation is shown. Finally, the use of deep learning to improve the scanning efficiency of the 
sensors is investigated.
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Chapter 1 Introduction
1.1 Purpose

Since classical times, people have dreamt of creating automata to perform tasks that are too 
menial or dangerous for humans. The best known creator of such devices in antiquity is Hero of 
Alexandria, a Greek engineer who invented mechanical wonders such as animated statues, auto­
matic doors, and vending machines [1]. Unsurprisingly, as time has marched onward so has the 
complexity of these automata. More recently, the use of autonomous robotic systems in factories 
has allowed mass production of goods on a grand scale, which has dramatically transformed the 
human condition. Typically, factory robots operate under a strict set of constraints in a highly con­
trolled environment, only performing a few defined functions. As the field of robotics expands to 
automate more and more menial and dangerous tasks, however, many robotic systems need to be 
able to operate in and maneuver through real-world environments, which are much more dynamic 
and unpredictable. This necessitates the development of robotic systems with ever-increasing in­
telligence and capabilities.

To assist in the human colonization of alien worlds, NASA, in cooperation with companies like 
Caterpillar, hosts the NASA Robotic Mining Competition every summer at the Kennedy Space 
Center in Florida. The goal of this competition is to develop robots that can autonomously mine 
resources such as dust and ice, as these are prevalent on planets such as Mars, and can be used 
to build structures and generate water, oxygen, and fuel to support human colonization. As such, 
these mining robots must be able to operate in outdoor environments with uneven terrain, with 
obstacles such as craters and rocks necessitating the use of 3D obstacle detection. The purpose of 
this thesis was to develop a low-cost 3D mapping system to be used on UAF’s mining robot for 
this competition; this system shall be henceforth referred to as the VS-LIDAR system, for variable 
scanning LIDAR.

1.2 3D Sensors

1.2.1 Cameras

Most autonomous mobile robots rely on some sort of vision to navigate through the world 
and complete their assigned tasks, and there are many different methods by which they obtain 
this vision. Perhaps the most familiar would be through the use of cameras. Equipped with a 
pair of cameras set up in a stereo configuration, a robot can determine the distances to objects in its 
environment, working on much the same principle as human eyes do [2]. By comparing differences 
in camera frames while the robot is moving, a single camera can also be used to estimate the motion 
of the robot and the 3D structure of its environment [3]. The relatively low cost of cameras makes 
them a popular choice for vision, but they suffer from several drawbacks. They are sensitive to
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changes in lighting, require careful calibration, and the 3D data they produce is done at quite the 
computational expense, while being noisy and error-prone [4].

1.2.2 RGB-D Cameras

Because of these limitations for cameras, many low-cost indoor robots utilize devices known 
as RGB-D cameras, which provide the depth (distance) to points in the scene, in addition to a color 
image. These began to see widespread use in November 2010 after Microsoft released the Kinect, a 
peripheral designed for their Xbox 360 gaming console. The Kinect, in addition to being equipped 
with a standard RGB camera, contains an infrared projector and an infrared camera. By projecting 
an infrared pattern onto the environment and detecting distortions in the pattern with the camera, 
the Kinect is able to determine distances to points in its field of view; this method of measuring 
depth is referred to as structured-light. The fact that it was mass-produced for a gaming console 
means that it is cheaply and widely available. It quickly became popular for use on low-cost indoor 
robots, such as the popular prototyping platforms Turtlebot 1 and Turtlebot 2 [5]. Nowadays, the 
Kinect can be obtained from second-hand stores for as low as $5. Many researchers have used 
the Kinect and similar structured-light cameras for low-cost indoor mapping and autonomy, such 
as [6], [7], and [8]. Other RGB-D sensors, such as the second version of the Kinect (Kinect v2), 
use time-of-flight measurements instead of projecting a pattern, meaning that they measure depth 
by emitting pulses of light and measuring the time they take to bounce off of objects and return, 
which is then converted into distance using the speed of light. The precise, high resolution timing 
circuitry required makes these types of RGB-D cameras more expensive than projection based 
ones, with base models typically costing between $100 and $200.

RGB-D sensors are fantastic for indoor robots, as they can quickly obtain dense point clouds 
(3D scans) with a high update rate (> 10 Hz). However, in places with high ambient light, like out­
door areas, their measurements become noisier, degrading performance. This is not as pronounced 
for time-of-flight cameras (e.g. [9]), but structured-light sensors can fail completely since their 
projected pattern is sensitive to interference [10].

1.2.3 LIDAR

The most accurate distance sensors utilize light detection and ranging, or LIDAR, which uses 
pulses of laser light to illuminate a target, then uses the reflected pulse to measure distance. LIDAR 
sensors can be broadly divided into two categories: scanning LIDARs and scannerless LIDARs 
[11]. For scanning LIDARs, the light from a laser is used to measure the distance to a single target 
point, and the laser light is steered and/or the laser is moved to capture an entire scene, with mul­
tiple lasers often being used to increase the capture speed. Scanning LIDARs can be configured to 
capture a scene with the viewpoint of a regular camera, a 2D planar slice around the LIDAR, or 
a 3D cloud around the LIDAR. For scannerless LIDARs, the light from a single laser is diverged
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so that it illuminates the entire scene at once, with the reflections being detected by a 2D pho­
todetector array. Time-of-flight cameras fall into the scannerless LIDAR category. Because the 
laser is diverged, considerably reducing the energy in each individual reflection, scannerless LI- 
DARs are typically more sensitive to ambient light than scanning LIDARs. However, scannerless 
LIDARs have the advantage of having no moving parts and generate much more data than scan­
ning LIDARs: for example, the Kinect v2 has a data rate of 6.5 million points per second while 
the Velodyne Puck, a popular LIDAR from Velodyne, used on everything from indoor robots to 
self-driving cars, only produces 300,000 points per second. But this high data rate can be a double­
edged sword, as processing the data requires significant bandwidth and computational resources, 
and most of this data will likely be filtered out anyway because of redundancy. For example, the 
original Kinect, with a comparatively smaller data rate of 2.3 million points per second, practically 
monopolizes the USB 2.0 bus on our mining robot’s control laptop.

Most scanning LIDARs used for ground robots use one of three methods of determining dis­
tance. The first method measures the time-of-flight directly using timing circuitry, whereas the 
second method measures the time-of-flight indirectly by measuring the phase difference between 
the emitted laser pulse and the reflected pulse. The third method is triangulation. In this method, 
the LIDAR has a laser emitter and an imaging sensor separated by a known distance. When the 
emitter emits a pulse of laser light, it is reflected off the target and hits the imaging sensor at a mea­
surable angle. This angle and the separation between the two devices is used calculate the distance 
to the target, with the maximum range of the LIDAR being determined by the separation. In gen­
eral, LIDARs which measure the time-of-flight directly are more expensive than those that measure 
it indirectly with the phase difference, with both being more expensive than triangulation LIDARs. 
Time-of-flight LIDARs also have much further ranges than triangulation LIDARs, on the order of 
100 meters for ground-based systems and several kilometers for aerial surveyors, compared to just 
a few meters for triangulation. However, triangulation based systems are typically more accurate 
than time-of-flight systems at close range due to the extremely short light travel times involved, but 
their accuracy does fall off fast as distance increases [12]. It is also worth noting that all LIDARs, 
because they use reflected laser light, have trouble with targets that are transparent, letting laser 
light pass through, or are black, absorbing the laser light.

1.3 Overview of Work and Contributions

This thesis describes the creation of a low-cost 3D mapping system that can be used by a mobile 
robot for autonomous navigation and obstacle avoidance. It utilizes a pair of rotating 2D LIDAR 
sensors, which work together to increase visual coverage and to compensate for a reduction in 
the system’s update rate caused by this rotation. The rotation parameters of the LIDARs can 
be reconfigured during runtime to provide denser or sparser scans, or to target a specific area.
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Scanning LIDARs are used over other sensors because of the low computational requirements of 
processing their data, the accuracy of their data, and their ability to operate in a wider range of 
environments due to being able to work in the dark as well as in the light. Custom hardware and 
software was made to interface with and control the LIDARs, and this LIDAR driver was made 
fully compatible with Robot Operating System (ROS) so that the VS-LIDAR is essentially "plug- 
and-play" with a large variety of existing robotic systems. The closest equivalent low-cost 3D 
LIDAR system commercially available was the Scanse Sweep 3D scanner kit [13], which also 
obtains 3D scans by rotating a 2D LIDAR. This scanner has a 40 meter range, captures 1000 data 
points per second, and costs $700. In comparison, while the VS-LIDAR only has a 6 meter range, 
it captures almost quadruple the amount of data at 3700 points per second, while costing half as 
much at $350. Additionally, this 3D scanner kit is no longer available for purchase.

The VS-LIDAR was attached to a mobile robotic base and its use for obstacle detection and 
navigation was demonstrated using existing navigation packages within ROS. To improve naviga­
tion, the robot’s wheel odometry, which tracks position, orientation, and velocity, was improved 
by fusing it with data from an inertial measurement unit using an Extended Kalman Filter. This 
improvement also allows data collected from the LIDARs to be more consistent while the robot is 
moving around. However, without correction, error in this improved odometry would still grow 
without bound. Thus, the system also includes a camera, which it uses to detect ArUco markers, 
which are a computationally efficient means to determine the absolute location and orientation of 
the robot and to identify landmarks.

To summarize the specific contributions of this work:

• The creation of a novel 3D LIDAR system with higher obstacle avoidance capabilities and 
lower cost that other LIDARs in the same price bracket. This was achieved by:

-  The use of a two rotating 2D LIDAR system to obtain 3D scans and compensate for 
the scanning deficiencies of each LIDAR individually.

-  The design and creation of a frame and 3D printed components which place the 
LIDARs in an optimal scanning configuration.

-  The design and creation of custom interface boards, custom microcontroller firmware, 
and a custom set of software packages which allow the VS-LIDAR system to be plug- 
and-play with the ROS development environment.

• Evaluation experiments performed to demonstrate the improved capability of the two LIDAR 
system to navigate in environments with unknown static and dynamic obstacles, illustrating 
the practicality of the system:

4



-  Experiment results illustrating the novel LIDAR system to be more capable for close 
range obstacle detection and for operation in sunlit environments than other low-cost 
3D sensors.

-  An example implementation of autonomous navigation utilizing pre-existing, standard, 
open-source ROS software packages, which illustrates the VS-LIDAR system being 
used for 3D obstacle avoidance and path planning in a real-world environment, han­
dling both static and dynamic obstacles.

• The investigation of a novel deep reinforcement learning based method of increasing the 
scanning efficiency of rotating 2D LIDARs, referred to as "adaptive scan dithering" in this 
thesis.

The software, firmware, and hardware developed in support of this thesis have been made 
open-source and are publicly available at the following URLs:

• Software packages, board schematics, CAD files: https://github.com/rykerDial/vslidar

• Microcontroller firmware: https://os.mbed.com/users/rldial/code/xv11_lidar_controller/

1.4 Multi-LIDAR and Rotating LIDAR Systems

Many autonomous robotic systems utilize multiple LIDAR sensors to map their surroundings, 
with perhaps the most famous of which being self-driving cars. These multi-LIDAR systems 
made their big debut in 2005 in the DARPA Grand Challenge, and in 2007 in the DARPA Urban 
Challenge. One multi-LIDAR self-driving car entered in the Urban Challenge consisted of six 
2D LIDAR sensors, three of which were rotated to obtain 3D data [14]. Another vehicle with 
multiple LIDARs, which actually won the Urban Challenge, was equipped with a newly released 
3D LIDAR, the Velodyne HDL-64 [15]. In fact, five of the six vehicles that finished the challenge 
were equipped with this LIDAR, which led Velodyne down the path to becoming the leading 
LIDAR manufacturer.

But with LIDAR sensors being so expensive, a big push is being made by researchers and man­
ufacturers alike to develop cheaper sensors and find more efficient means of sensing. In [16], citing 
the prohibitively high cost of 3D LIDARs, the authors test out high-speed 3D obstacle detection 
for a self-driving car using an array of five 2D LIDARs. These LIDARS are kept at a static angle 
to provide planar scans of the road at short, medium, and long ranges. The combined cost of the 
five LIDARs is about $40,000, certainly an improvement over the typical cost of LIDAR systems 
for self-driving cars in use at the time, but still quite expensive.

Of course, the use of LIDAR sensors is spreading not only in self-driving cars, but in all manner 
of mobile robots, both grounded and flying. Described in [17] is an indoor 3D mapping system
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using an orthogonal pair of 2D LIDARs. One LIDAR is mounted horizontally, and is used to 
estimate the motion and determine the location of the robot, while the other is mounted vertically, 
with the motion estimate being used to stitch the vertical scans together into a 3D map as the robot 
drives around. The system was designed to be driven by a human operator, but if it was made 
autonomous this LIDAR setup would not allow it to perform 3D obstacle detection; this, coupled 
with the fact that it relies on features like walls for motion estimation and localization, would 
restrict its autonomous operation to more mundane indoor environments. In terms of price, the 
two LIDAR sensors alone cost over $18,000. A similar method of mapping buildings with a pair 
of orthogonal 2D LIDARs is used by Google’s Cartographer backpack [18].

In [19], researchers describe the creation of a robot capable of fetching beer from a refrigerator. 
This system performs 3D obstacle detection by tilting a 2D LIDAR, but since the update rate is 
slow the data is supplemented with point clouds obtained from a stereo camera setup. The tilting 
LIDAR has a slow update rate and a large field-of-view, while the stereo camera has a high update 
rate but a slow field-of-view, so the tilting LIDAR is used to identify "macro structures" in the 
environment such as people and the refrigerator, which is then used to turn the camera towards 
points of interest for denser, faster scans. Of course, this system is only meant to be operated in 
indoor, illuminated environments, with the kinds of obstacles you would typically encounter in an 
office setting.

[20] describes a system similar to the one in this thesis, which uses a rotating 2D LIDAR to 
obtain 3D maps. It is capable of mapping both indoors and outdoors. However, this system only 
performs 3D mapping when the robot is stationary, keeping the LIDAR horizontal while driving 
for 2D obstacle detection. This work did not investigate using the system autonomously at all, 
instead having it remotely operated with the help of cameras, and no follow-up work could be 
found, so it is unclear whether or not they would have stuck to this configuration.

1.5 Thesis Organization

The rest of this work is organized as follows. Chapter 2 details the hardware used in the VS- 
LIDAR, discussing the individual components used as well as the full system assembly. Chapter 
3 goes over the software used to control the LIDARs and allow the robot to navigate through 
its environment. Afterwards, Chapter 4 describes several experiments performed to evaluate the 
performance of the system. Chapter 5 describes an attempt to improve the scanning efficiency 
of the system using deep learning. Finally, Chapter 6 discusses the conclusions of this work, 
opportunities for future work, and lessons learned.
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Chapter 2 Hardware
2.1 Overview

The hardware layout for the VS-LIDAR system is fairly straightforward; a simple system dia­
gram is shown in Figure 2.1. 3D scans of the environment are obtained by panning the 2D Revo 
Laser Distance Sensor with a Dynamixel AX12A servo. This distance sensor and servo form a 
3D LIDAR module, and the system uses two of these modules. These 3D LIDAR modules are 
controlled by an STM32F767ZI microcontroller unit (MCU) via a simple plug-and-play inter­
face provided by custom-built LIDAR interface boards. Also attached to the microcontroller is 
the BNO055 inertial measurement unit (IMU), which provides useful data on the motion of the 
system. The microcontroller sends data from the servos, LIDARs, and IMU to an Acer C720 
Chromebook computer, which processes this data and uses it to control the behavior of the system. 
Also connected to the laptop is the Genius webcam, which is used to detect ArUco markers for 
absolute position and orientation detection. Additionally, the VS-LIDAR system is mounted to 
the Create 2 mobile robotic platform, which allows the system to explore its environment. In the 
coming sections, each of these components is described in greater detail, and the assembly of these 
components into the system as whole is illustrated.

i----------------------------------------------------------------------------------------- 1

Figure 2.1: VS-LIDAR System Hardware Layout
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2.2 Components

2.2.1 Revo Laser Distance Sensor

The Revo Laser Distance Sensor (LDS) is a low cost LIDAR described in the 2008 paper of 
Konolige et al. [21], and is used by the robot to perceive the structure of its environment. A labeled 
picture of this device is shown in Figure 2.2. This sensor is more commonly known as the Neato 
XV-11 LIDAR, as it made its debut on the mass consumer market in 2010 on the XV-11 robotic 
vacuum cleaner from Neato Robotics, where it was used by the robot to map out its environment for 
more efficient cleaning. This LIDAR module can be purchased separately from third party sellers 
typically for about $100, making it perhaps the cheapest 2D scanning LIDAR available, and the 
relatively low cost and decent capabilities of this device has made it a popular choice amongst 
robotics hobbyists and researchers, which sparked a large community effort to reverse engineer 
the device. The main site describing the control protocol of the device, along with other important 
properties, is the XV11 Hacking Wiki [22]. Also, for those interested, the significant properties of 
the laser itself are listed in [23, pp. 51].

This LIDAR consists of a laser emitter and an imaging device, which are spun around by a belt 
connected to a motor, and distances to objects are determined using triangulation. As mentioned 
previously, to determine the distance the emitter first sends out a pulse of laser light, which reflects 
off an object and then hits the imaging sensor at a certain measured angle. The angle, along with 
the known positions of the emitter and imaging device, are then used to calculate the distance to 
the object. This process is repeated in one-degree increments along the rotation of the LIDAR, 
so one full rotation produces 360 distance measurements. Note that the device only rotates in one

Motor
.Connector

Connector

Figure 2.2: Revo LIDAR
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plane, so the sensor only obtains a planar slice of its environment. The sensor supports a maximum 
rotation rate of 320 RPM, so the device can make a maximum of 1920 distance measurements per 
second. Using triangulation limits the range of this sensor to be between 0.2 m and 6 m.

Sensor input and output is accomplished with six wires. Two of these are to power the motor, 
and the other four are used to power and communicate with an internal microcontroller. Commu­
nication with the microcontroller is done over a full-duplex serial connection operating at 115,200 
baud, full duplex meaning that it supports both serial transmission (TX) and reception (RX) and 
has one line dedicated for each. The serial configuration is 8N1, meaning for every byte of data 
their are 8 data bits, no parity bits, and one stop bit. The microcontroller controls the laser emitter 
and imaging sensor, measuring distances as well as the intensity of the returned signals. This data 
is compiled into packets which are then transmitted over the serial line. Each packet contains four 
pairs of distance/intensity measurements, the angle of rotation corresponding to the first measure­
ment pair, the motor’s RPM, and two cyclic redundancy check (CRC) bytes which allow the packet 
to be checked for errors. A number of commands can also be transmitted to the microcontroller, 
such as commands to report the firmware version or calibrate the device.

2.2.2 Dynamixel AX-12A Smart Serial Servo

The Dynamixel AX12A is a "smart" digital servo sold by Robotis, and they are used to pan the 
LIDARs so that the robot can perceive its environment in three dimensions. These servos are de­
signed for and commonly used by robotic systems that require precision positional control. Typical 
hobby-grade analog servos, which are controlled via simple modulated electrical signals, usually 
have a rated range of motion of 0-180°. However, in practice these analog servos rarely achieve 
their full theoretical range of motion, and for most the feedback detailing the actual position of 
the servo is not exposed to the user, meaning that one cannot know for sure what the actual angle 
is. For panning the LIDARs, this uncertainty in the actual angle is unacceptable because it would 
result in a significant error in fusing the laser scans together into point clouds, and this inaccuracy 
would have a negative impact on the robot’s vision-based navigation.

What makes Dynamixel servos smart is that they have sophisticated on-board circuitry that 
controls the servo. This circuitry can set the position of the servo to anywhere from 0-300° with a 
resolution of 0.29°, allowing for much finer control over traditional servos. The digital interface, 
a half-duplex 8N1 serial bus operating at 1,000,000 baud, allows users to interact with the servo 
using a simple API [24], and also allows multiple servos to be controlled using a single wired 
connection. In addition to setting the position of the servo, this interface provides feedback on not 
only the actual position, but also on the temperature, the supplied voltage, and the current load 
on the servo. Further, the user can set limits on torque and the acceptable error between actual 
and ideal position, change the clockwise and counterclockwise limits of rotation, and control the
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rotation speed of the servo with a max speed of 114 RPM and a resolution of 0.111 RPM. The fine 
control on rotation limits and speed is particularly useful for ensuring a precise panning profile for 
the LIDARs. These feature-packed servos are ideal for applications that require fine positional and 
operational control, and this combined with their relatively low price of $45 makes them an easily 
justifiable replacement for analog servos.

2.2.3 Bosch BNO055 Inertial Measurement Unit

The BNO055 is a low cost inertial measurement unit (IMU) containing an accelerometer, a 
gyroscope, and a magnetometer, which is described in [25]. The accelerometer provides linear 
accelerations along the x, y, and z axes of the device, the gyroscope provides angular velocities 
about these axes, and the magnetometer provides a 3D compass bearing relative to the magnetic 
north pole. It also contains a dedicated microcontroller, which not only calibrates the three sensors 
during runtime, but also combines the sensor data into orientation estimates using proprietary 
algorithms. These orientation estimates can be reported as either Euler angles (roll, pitch, and 
yaw) or as quaternions; the quaternion output is more accurate, so it is used in the VS-LIDAR 
system. Additionally, the board produces two additional readings with the accelerometer data: one 
that is the linear accelerations with acceleration due to gravity removed, and one that is just the 
gravitational accelerations. The IMU is a very useful source of information when trying to estimate 
the robot’s motion and orientation, so it lends itself well to robot localization.

Communication with the board is accomplished with an I2C interface, and the device is config­
urable for data fusion modes that both include and exclude the magnetometer. The magnetometer 
requires much more calibration to be accurate than the accelerometer and the gyroscope, and just 
as the readings of a traditional compass can be skewed by ferrous metals and sources of electricity, 
so too can the readings of the magnetometer. For these reasons, in the VS-LIDAR system the 
magnetometer is disabled, and the IMU performs its data fusion and processing using only the 
gyroscope and accelerometer data.

2.2.4 STM32F767ZI Microcontroller and LIDAR Interface Boards

The STM32F767ZI is a high performance ARM Cortex-M7 based microcontroller from STMi- 
croelectronics [26]. This board interfaces with the LIDARs, servos, and the IMU, and facilitates 
the compilation and transfer of sensor data to the robot’s primary computer. It sports a 216 MHz 
CPU and a host of other features that make it powerful enough to run the VS-LIDAR system. The 
LIDAR boards shown in Figure 2.3 were designed to allow for an easy, plug-and-play interface 
between the STM32F767ZI and the scanning LIDAR system. The larger of the two boards is the 
LIDAR Main Board, which plugs into the microcontroller as shown. A circuit schematic for the 
main board is shown in Figure 2.4. On the left side of the board is power circuitry. 9-12 V is fed 
into the circuit via a barrel jack, which is used to power the servos and is also stepped down to 5
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V to power the LIDARs. A switching regulator is used to step down the input voltage to 5 V, both 
reducing the power consumption of the board as well as the heat generated (in a prototype using a 
simple linear regulator, the regulator was getting so hot that it required a heatsink). In the middle 
of the board are connectors for the servos, as well as an octal line buffer to arbitrate the half-duplex 
servo serial bus. On the right side of the board are two RJ-45 ports which are used to connect to 
the LIDAR Interface Boards.

The smaller of the two boards shown in Figure 2.3 is the LIDAR Interface Board, and there is 
one of these boards per LIDAR. A circuit schematic for these boards is shown in Figure 2.5. Each 
board has ports for the LIDAR’s serial and motor connectors, along with a simple circuit allowing 
the speed of the LIDAR’s motor to be controlled by a pulse-width modulated (PWM) signal. This 
circuit consists of a field-effect transistor (FET) which is switched on and off by the PWM signal, 
allowing enough current to flow through the motor to achieve the desired speed. There is also a 
diode placed across the motor terminals to protect the main board circuitry from any electricity 
generated by the motor, as well as a resistor pulling the gate of the FET to ground to ensure that 
the FET is off when the PWM signal is low. This circuitry is used by a proportional-integral (PI) 
controller to keep the motor’s RPM near a target level; more on this controller in Section 3.4.

To interface with each LIDAR, three dedicated wires are needed: two for serial TX and RX, 
and one for the PWM signal. Additionally, the LIDARs need connections to 5 V and ground for 
power; these lines can be shared between LIDARs. Thus, the eight lines of the RJ-45 bus are 
exactly enough to support two LIDARs. Jumper pads on the LIDAR interface boards are used to 
select which lines are used for TX/RX and the PWM signal, so only one type of interface board 
needs to be manufactured.

Figure 2.3: LIDAR Interface Boards
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Figure 2.4: Circuit Schematic for LIDAR Main Board
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Figure 2.5: Circuit Schematic for LIDAR Interface Board

2.2.5 Create 2 Programmable Mobile Robotic Platform

The Create 2 is a low cost mobile robotic platform sold by iRobot for use by STEM educators 
and by robotics hobbyists and researchers. Interfacing with the platform is done with the Create 
2 Open Interface Specification [27], and the system has a host of sensors that are useful for robot 
autonomy. The platform has two independently driven wheels allowing it to move using differential 
drive, a common drive style for mobile robots where the velocities of the two wheels are controlled 
to allow the robot to either move forward, backward, or turn with a certain radius. This turning 
radius can be zero, allowing the robot to turn in place about the center of its two driven wheels. 
Encoders track the movement of these wheels, and this motion is integrated into odometry that 
estimates the robot's trajectory. This tracking is very useful for robot localization, but cannot be 
relied on as the sole source of localization information, as the error in the odometry will drift 
without bound over time unless corrected by some absolute reference (e.g., with regards to a map). 
Sources of error include wheel slippage and limited resolution of motion integration [28, pp. 269­
270]. While the Create 2 is a very useful platform for testing the VS-LIDAR system’s surveying 
and exploration capabilities, it should be noted that the system can be used on any mobile ground 
robot which provides wheel odometry and is big enough to support its weight and inertial forces.

2.2.6 Acer C720 Chromebook and Genius Webcam

The computer chosen to run the robot’s control software is the Acer C720-3404 Chromebook. It 
is equipped with an Intel Core i3-4005 CPU clocked at 1.7 GHz, 4 GB of RAM, and a 32 GB solid- 
state storage drive. Instead of the stock Chrome OS operating system it is running Ubuntu 14.04,
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a popular Linux distribution with a host of available tools that make software development easier. 
These were chosen because they are fairly powerful relative to their cheap $279.99 price tag, and 
they have the additional benefit of having a small form factor, making them easier to incorporate 
in robotics projects. The webcam used for ArUco marker detection is a Genius webcam, which 
sports a wide-angle field-of-view and a resolution of 1080p, and was chosen because of its decent 
specs and the fact there were a lot left over from a previous robotics project. This particular camera 
costs $49.99, but it could easily be replaced by a cheaper model.

2.3 System Assembly

2.3.1 3D LIDAR Module

Figure 2.6 shows how the Revo LDS, Dynamixel servo, and LIDAR interface board are assem­
bled into a 3D LIDAR module using 3D-printed brackets. The Revo LDS is placed at a 90° angle 
relative to the servo such that the axis of rotation for the servo is orthogonal to the axis of rota­
tion for the laser scans. This configuration enables and maximizes the 3D coverage of the LIDAR 
sensor.

Figure 2.6: 3D LIDAR Assembly

2.3.2 Full Assembly

An annotated picture of the fully-assembled VS-LIDAR system is shown in Figure 2.7. The 
system has two 3D LIDAR components: the topmost one pans in a way that primarily maps the 
region in front of the robot, and the bottommost one pans in a way that primarily maps the regions
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to the left and right of the robot. Additionally, the bottom LIDAR is oriented at a 45° angle from 
the horizontal plane so that its center of rotation points towards the ground directly in front of 
the robot. The LIDAR provides real-time mapping coverage of a small region about its center of 
rotation, so this placement allows the robot to always have some idea of what is directly in front of 
it.

The two LIDARs, along with the IMU, are held together with a frame made of steel plate, alu­
minum tubing, and 3D printed brackets. This frame is itself rigidly attached to platforms mounted 
on the Create 2 mobile base. These rigid and static placements allow for more reliable fusion of 
the LIDAR, IMU, and wheel odometry data: the static placement means the system does not have 
to track changes between the coordinate frames of the various sensors, and the rigidity means the 
system does not need to worry as much about mechanical stresses on the system skewing the rela­
tionships between the frames. Also noteworthy is that the IMU is placed on the Create 2’s center 
of rotation. This allows the IMU to more accurately track the rotation of the robot, as the angu­
lar velocities and orientation estimates provided do not have to be transformed to account for an 
offset between the IMU and the center of rotation. Table 2.1 gives a breakdown of the cost of the 
VS-LIDAR system, and shows both the cost of just the 3D LIDARs (LIDARs, servos, and control 
boards) and the total cost of the VS-LIDAR test platform. Note, this does not include the costs of 
3D printed components or frame construction materials, as these are bound to vary.

Table 2.1: Cost of Components in VS-LIDAR Test Platform

Component Cost

Revo LDS (x2) ~$200.00
Dynamixel Servo (x2) $ 90.00
BNO055 $ 34.95
STM32F767zi Board $ 22.54
LIDAR Interface Boards ~$ 40.00
Create 2 $199.99
Acer C720 Chromebook $279.99
Genius Webcam $ 49.99

Total (3D LIDAR) $352.54
Total (All) $917.46
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Figure 2.7: LIDAR Test Platform with Significant Features Labeled

16



Chapter 3 Software
3.1 Robot Operating System

To hasten development time and enable components of the VS-LIDAR system to be easily 
integrated into other robotics projects, the system makes extensive use of Robot Operating System 
(ROS) [29]. ROS in an open source software framework designed to facilitate the creation of 
complex robotic systems by providing general purpose tools and libraries that prevent roboticists 
from having to "reinvent the wheel.” Additionally, ROS defines a set of standards for both robotics 
software and robotics design in general, that not only result in more robust robots but also allow 
the developer community to easily share code and apply it to other projects. While community 
provided libraries and tools for ROS don’t typically follow any specific release schedule, ROS’s 
core set of tools and libraries is updated about every year or so to improve various aspects of 
the software. The ROS distribution corresponding to the Ubuntu 14.04 operating system that the 
robot’s control laptop is using is known as ROS Indigo Igloo. This version was chosen because it is 
a long term support (LTS) version, meaning that for five years after its initial release it is guaranteed 
to be updated to fix bugs and any other problems that pop up. Developing the VS-LIDAR software 
using an LTS version guarantees that it is built using a well-tested and well-supported set of tools, 
and also increases its utility to the community.

Control software utilizing ROS is split into a set of programs called nodes, where each node 
implements a distinct aspect of the system’s functionality. For example, a system could have one 
node for getting data from a camera and another for processing that data. Information passing 
between nodes is accomplished via a publisher/subscriber scheme, with data packed into standard­
ized message formats for easier sharing. The node in the above example collecting the camera data 
would publish it, making it available to other nodes, and the processing node would subscribe to 
this data, letting the ROS system know that it wants to receive new data as it is made available. 
A master node, common to all ROS-based systems, facilitates the transfer of messages between 
publishers and subscribers. This setup decouples information production from its consumption, 
meaning nodes are modular and ROS-based systems are easily reconfigurable and adaptable.

3.2 Frames of Reference

Each sensor in the VS-LIDAR system that provides spatial data does so in its own coordinate 
frame, so understanding and managing the relationships and transformations between each frame 
is critical for data fusion. Luckily, ROS provides the library tf2 to help with this, and has set 
some standards for mobile robot coordinate frames [30]. Coordinate frames are organized in a 
tree, where each node can have any number of child frames but only one parent frame. To aid 
in visualizing the relationships between frames in the VS-LIDAR system, this tree is shown in 
Figure 3.1. Starting at the base of the tree are laser_frame_1 and laser_frame_2, the coordinate
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frames for the 2D laser data. The servo angle is used to rotate these frames into base_laser_1 and 
base_laser_2, static frames with their origins at the base of the servos, then a fixed offset is applied 
to transform each individual base_laser frame to a single base_laser frame, which has its origin 
at the bottom of the VS-LIDAR mechanical frame (close to the IMU but slightly lower). Tracking 
the rotation of each laser_frame relative to the fixed base_laser frame allows the 2D scans to be 
transformed into 3D point clouds.

The coordinate frames of the camera and the IMU are usb_cam and imu_link, respectively. 
These frames, along with the base_laser frame, are all transformed relative to a single fixed point 
on the robot, base_link, whose origin is placed coincident with the origin of imu_link. Then, these 
frames are further transformed relative to base_footprint, whose origin is coincident with the origin 
of base_link, except it lies in the ground plane at the base of the robot. Finally, the robot’s position 
and orientation in the environment are tracked by the transformation between the odom frame and 
base_footprint, with the origin of the odom frame essentially being the origin of an odometric map.

Figure 3.1: VS-LIDAR System Coordinate Frames
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3.3 System Overview

The VS-LIDAR system’s software packages span across multiple pieces of hardware and op­
erating systems. Figure 3.2 illustrates how the various components interact and are composed to 
form the system as a whole. On the top layer of this figure is the system’s hardware: the Create 2 
robot, the mobile base used for testing autonomous navigation; the Genius webcam, which is used 
to detect an ArUco marker to determine the absolute pose (position and orientation) of the robot; 
and the microcontroller, which collects data from the IMU, LIDARs, and servos, and controls the 
panning motion of the servos. A collection of nodes running on the robot’s control laptop interface 
with these devices and implement the main functionality of the VS-LIDAR system:

• rosserial node: Preexisting ROS package, receives data from the microcontroller and pub­
lishes it to make it available to other nodes. Also sends any reconfigurations to servo panning 
parameters to the microcontroller.

• xv11_raw2scan_wtf node: One per LIDAR, these nodes parse raw LIDAR data packets 
from the microcontroller and publish it as a standard ROS LaserScan message. Also, using 
the angle of the corresponding servo, they publish a coordinate transform from the corre­
sponding laser_frame to the corresponding base_laser frame, which allows the LIDAR data 
to be transformed from 2D to 3D.

• xv11_raw2imu node: This node parses raw IMU data and publishes it using the standard 
IMU message.

• scan2cloud node: One per LIDAR, these nodes transform the 2D LaserScan in the corre­
sponding laser_frame into a 3D PointCloud2 in the base_footprint frame. They also filter 
out any points from within a small bounding box around the robot so that any scans of the 
chassis are discarded.

• usb_cam node: Preexisting ROS package, this node interfaces with the Genius webcam, 
collecting raw camera data and publishing it for the rest of the system.

• aruco_mapping node: Preexisting ROS package, this node detects ArUco markers within 
the camera’s field-of-view and publishes the markers’ positions and orientations. This pack­
age is capable of detecting multiple markers and making a map with them, but in this system 
it is used simply for detecting the pose of a single marker.
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Goal Pose

Figure 3.2: VS-LIDAR System Diagram
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• aruco_pose_repack node: This node subscribes to marker poses from the aruco_mapping 
node. When a marker has been detected, it first checks the ID of the detected marker to guard 
against false detections. Then, if the robot is close enough to the marker, it corrects the pose 
to account for the camera’s offset from the robot’s center of rotation, and then publishes the 
pose as a PoseWithCovarianceStamped message.

• ca_driver node: Preexisting ROS package, this node interfaces with the Create 2 mobile 
base, sending it drive commands and publishing received sensor data, which includes the 
wheel odometry. As such, this node is subject to change depending on what mobile base 
the VS-LIDAR is attached to, for example being replaced with a custom driver for UAF’s 
mining robot.

• robot_localization node: Preexisting ROS package, this node subscribes to the IMU data, 
the wheel odometry, and the ArUco marker pose, and fuses them together with an Extended 
Kalman Filter to produce more accurate odometry.

• cloud2obstaclemap node: This node accumulates LIDAR point clouds, using the filtered 
odometry to account for the robot’s movement. At a set rate, it takes these accumulated 
clouds and filters them so that only obstacles remain. Currently, this is done by setting and 
minimum and maximum obstacle depth and height, and removing points that are not within 
one of these two bands, effectively removing the floor and any hanging objects the robot can 
safely pass under. The node then publishes the obstacle cloud and starts over, deleting the 
previously accumulated cloud.

• move_base node: Preexisting ROS package, this node allows the robot to navigate through 
its environment using the LIDAR data and the filtered odometry. It constructs maps within 
the odom coordinate frame, which it then uses to plan paths which allow the robot to drive 
around obstacles to waypoints. These waypoints can be set either by a human user or by a 
node using the autonomous navigation to complete a specific task.

Other notable nodes that were developed but are not used in the final system:

• cloud_accumulator node: Accumulates and then publishes a complete panning cycle’s 
worth of point clouds for the specified LIDAR. This is used to visualize the differences 
in the point cloud between consecutive panning cycles.

• cloud_coverage_metrics node: Computes coverage metrics described in Chapter 5 for a 
specified LIDAR.

• adaptive_dither_dqn node: Implements the neural network described in Chapter 5. At­
tempts to intelligently dither the rotation speed of the specified LIDAR.
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3.4 Microcontroller Firmware

The firmware for the microcontroller was created using ARM’s Mbed development environ­
ment, which provides a set of libraries to more easily use the microcontroller’s hardware as well as 
implements more complicated functionality such as task scheduling. Like ROS, the Mbed platform 
also provides tools for community code sharing, facilitating the creation of more complex systems. 
Additionally, Mbed has a library allowing the microcontroller to communicate with PC-side ROS 
nodes directly using robust, standardized protocols.

Figure 3.3 shows the process diagram for the microcontroller firmware. Upon system startup, 
the MCU is configured as a ROS node so that it can communicate with the ROS system on the PC- 
side. Additionally, the hardware random number generator is initialized so that it can be used to 
generate random offsets for the servo rotation rates. Next, the IMU is configured, which includes 
uploading prerecorded calibration data to the IMU so that it can immediately provide accurate 
orientation estimates without having to first go through its internal calibration routine. This speeds 
up the system start up, and since the magnetometer is disabled this initial calibration data is still 
viable if the system is moved to a different location. It should be noted that the IMU will still 
update this calibration during runtime to further improve the accuracy. In addition to uploading 
this calibration data, the x, y, and z axes of the IMU’s sensors are remapped such that the IMU’s 
x-axis points forward in the base_footprint frame, as it is the standard in ROS that in a robot’s base 
coordinate system, the x-axis represents the direction of the robot’s forward motion [31]. Since the 
purpose of the IMU is to measure changes in the robot’s motion, it makes sense for the coordinate 
systems to be aligned in this manner.

The servos are configured next. Communication is established with each servo, their panning 
parameters (rotation speed and the clockwise and counterclockwise panning limits) are set, and 
then their angles are initialized to their clockwise panning limits. The left-to-right sweeping LI­
DAR is initially configured to pan between 105° and 195°, which allows it to sweep 45° to each 
side of its 150° centerpoint. This provides a good view of the robot’s sides, and panning beyond 
these limits would just result in the LIDAR scans being increasingly obstructed by the robot’s 
chassis while potentially also collecting useless scans of the room’s ceiling. The front sweeping 
LIDAR is set to pan from 145° to 195°, 45° counterclockwise and 5° clockwise of the centerpoint, 
with the panning range being smaller than that of the left-to-right sweeping LIDAR to allow the 
area in front of the robot to be scanned more frequently. This counterclockwise limit and bias max­
imizes the amount of ground in front of the robot scanned without the scans being obstructed by 
the left-to-right sweeping LIDAR and the chassis, which aids in navigation by allowing the robot 
to detect obstacles that lie in its path. The small slice of space scanned clockwise of the centerpoint 
provides coverage of features taller than the robot. Both LIDARs begin their panning at a speed of
7.5 rpm, which was chosen by observing point clouds obtained at different speeds without random

22



Figure 3.3: Microcontroller Firmware Process Diagram

dithering and choosing a speed which seemed to provide a "good" point density without panning 
too slow.
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Finally, the actual LIDARs are configured, which entails establishing a serial connection with 
each LIDAR, spinning them up so that they start transmitting data, and starting up the proportional- 
integral (PI) controller which keeps the LIDAR spinning at its target speed. This PI controller has 
parameters K p =  1.0 and Ti =  0.5, and has a update rate of 500 Hz. It adjusts the PWM signal 
sent to the speed control circuitry of the LIDAR Interface Board to bring the LIDAR’s motor RPM 
closer to the target speed. The motor can go as fast as 320 RPM before the LIDAR’s on-board 
microcontroller can no longer keep up with the data produced by the sensor, so the target speed in 
the VS-LIDAR system is set to 310 RPM to provide a bit of a buffer zone. Since each revolution 
provides 360 distance measurements (one per degree), this results in an average data rate of 1860 
distance measurements per second per LIDAR. The motors keep the LIDARs spinning close to 
the maximum speed so that more data is collected and thus the system can survey the environment 
more quickly. One familiar with control systems may wonder why a derivative term was not added, 
why a PI controller was used instead of a proportional-integral-derivative (PID) controller. This 
is because the derivative term amplifies the noise in the feedback signal, and for this system, the 
motor RPM measurement was noisy enough that adding a derivative term caused the controller to 
overshoot more often and with greater magnitude, while providing no clear benefit.

After configuration, the MCU enables interrupts and enters the main program loop. This loop 
first checks if there is new packet of data available for either LIDAR, and if there is it checks if it 
is valid by performing the cyclic redundancy check. If it is, it stores the data and uses the reported 
motor RPM to update the PI controller; otherwise the packet is discarded. The system then checks 
whether or not enough packets have been collected from that LIDAR to transmit the data to the 
computer. If so, it publishes the LIDAR data, along with the current angle of the servo. The servo 
angle will have changed between the first packet of LIDAR data and the last in the set. This is 
accounted for on the PC side by the scan_to_cloud node using the current angle, in conjunction 
with the angle reported with the previous set of LIDAR data, to estimate the motion and interpolate 
the points in 3D space; more on this in Section 3.5. Too few packets, and the microcontroller may 
be reading the servo angles too often, tying up the servo serial bus and interfering with the panning 
control. Sending packets more frequently also increases the amount of overhead in sending data 
to the PC. But the more packets collected, the less accurate the motion estimation will become 
due to variations in the servo’s speed. Ultimately, collecting 48 data points (12 packets) before 
transmitting the data to the PC was chosen as a good balance of these trade-offs. All told, each 
packet of data transmitted to the PC contains 48 pairs of distance and intensity measurements, the 
rotational angle of the Revo LDS corresponding to the first pair of measurements, the servo angle 
corresponding to the last pair of measurements, a timestamp corresponding to the start of this data 
collection, and, to aid with interpolating the points, the average RPM of the LIDAR’s motor while 
the distance/intensity data was being collected.
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After processing any packets from the LIDARs, the system then checks if it time to update the 
servos, which occurs at set frequency of 20 Hz using a timer. If so, it first checks if it is time to 
apply a random offset to the rotation rates of the servos, which occurs at set frequency of 2 Hz. The 
hardware random number generator is used to apply an offset between ±5 RPM to the 7.5 RPM 
baseline; this dithering is performed to aid with spreading out points between consecutive panning 
cycles. Then, the system checks if either servo has reached its clockwise or counterclockwise 
panning limit, and if so starts panning that servo in the direction of the other limit.

Afterwards, if new panning parameters have been received from the PC-side, the baseline rota­
tion speed and clockwise and counterclockwise limits are updated, provided they are valid. Next, 
if the servo is now panning clockwise, the system pans at the configured rotation speed, otherwise 
it pans at a fast speed of 28.5 RPM. Panning to one side quickly instead of having a consistent 
speed throughout is done because when the servos change direction, the LIDARs start scanning 
the area that was most recently scanned. It is more desirable to scan areas that were least recently 
scanned, since it allows the system to detect changes in the environment across the robot’s entire 
field-of-view sooner and with more consistency. Thus, even if the system is panning to one side 
slowly to obtain a denser cloud, it should still pan to the other side quickly to start scanning areas 
that were least recently scanned sooner. Starting to pan counterclockwise is also accompanied by 
publishing an Empty message to signal the end of the panning cycle, which is used on the PC-side 
to compare point clouds from consecutive cycles. Finally, the ROS node is updated, which trig­
gers the process of transmitting published data to the PC and processing any data received from 
the PC. After controlling the servos, the final step in the main program loop is to read data from 
the IMU, which it does at a fixed rate of 10 Hz using another timer. This involves obtaining the 
linear acceleration, angular velocity, and orientation data from the IMU, compiling this data into 
a timestamped packet, publishing it, and then updating the ROS node once again. Then, the main 
loop starts anew.

3.5 PC-Side Point Cloud Fusion

Let us now examine in greater detail the process used to transform the 2D LIDAR into 3D 
point clouds. As mentioned above, two nodes work together to do this, xv11_raw2scan_wtf and 
scan2cloud, and there exists a pair for each LIDAR. Upon receiving a raw packet of laser scan data 
from the rosserial node, the xv11_raw2scan_wtf node first steps through each distance measure­
ment, and if any lie outside the specified range of the LIDAR (2cm to 6m) it sets that distance and 
its corresponding intensity measurement to 0. Each pair of measurements is stored in a LaserScan 
message after their values are verified. Afterwards, the average RPM of the LIDAR’s motor is 
used in conjunction with the number of data points collected to estimate the time increment be­
tween consecutive measurements, which is used when interpolating the points; this too is stored in
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the LaserScan message. Finally, the timestamp is extracted from the packet and used to stamp the 
LaserScan message with the time that the data collection for that scan started.

The other task that this node performs is to use the servo angle to provide the transform between 
the specific laser_frame and the specific base_laser. For brevity, the method of calculating this 
transform is not discussed here, but it is worth noting that the transform is not timestamped with 
the same time as the LaserScan message. Where the LaserScan is timestamped corresponding to 
the start of the data collection, the transform is timestamped corresponding to the ending of the 
collection, since that is when the servo angle was read. The ending timestamp is determined by 
adding to the starting timestamp the time increment in between measurements multiplied by the 
number of measurements minus one. More accurate timestamps for the transforms improve the 
accuracy of the point interpolation.

The scan2cloud node utilizes the preexisting laser_geometry package, which produces a point 
cloud given a laser scan and a target coordinate frame, and was originally designed for 2D LIDARs 
on tilting platforms. Using this package is advantageous because instead of just doing a simple 
transform, it also interpolates the points to account for the rotation of the sensors. To trigger this 
behavior, it was told to transform the laser data from the specific laser_frame to the base_footprint 
frame. This transform branch accounts for the motion of laser_frame caused by the servo, but 
not the motion caused by the robot’s driving. It is pointless to do so, since these point clouds 
are published at an average rate of 38.75 Hz, while the wheel odometry is published at a rate of 
only 10.2 Hz, so the robot can be considered stationary during the collection of the laser data; 
regardless, laser_geometry isn’t capable of accounting for the robot’s linear motion anyway. To 
interpolate the points, laser_geometry then looks up two coordinate transforms: the transform from 
laser_frame to base_footprint corresponding to the start of the laser data collection, and the same 
transform corresponding to the end of the collection. Using these transforms, it then performs 
Slerp, or spherical linear interpolation, on the points. More information on Slerp can be found in 
[32].

After obtaining the point clouds, the scan2cloud node filters out all points that fall within the 
bounding box of the robot to avoid scanning its own chassis, which is made easy by having the 
clouds in the base_footprint frame. Were this not done, the robot would leave phantom scans of 
itself behind as it moved around, which could potentially confuse the autonomy. The point clouds 
are then finally published for use by the rest of the ROS system.

As noted above, these point clouds are then sent to the cloud_obstacles node. This node ac­
cumulates these clouds, accounting for the motion of the robot by transforming them to be in the 
odom frame. Relying on the odom frame like this is necessary, but requires that odometry be ex­
tremely accurate over the short term. This could also cause the point clouds to be accumulated 
incorrectly if the robot is stuck, say, driving into a wall at full power. A solution to this would
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be the incorporation of a sensor that could quickly tell if the robot is moving or not. The Create 
2 has an encoder on its caster wheel, referred to as the stasis sensor, which can tell if the robot 
is stationary even if the powered wheels are spinning telling it otherwise. However, this sensor 
wasn’t used by the VS-LIDAR system because it is specific to this one mobile platform.

After accumulating clouds for a set amount of time, determined by a set update rate, the node 
passes the combined cloud through a series of filters. The first filter, a passthrough filter, removes 
points that fall between a minimum obstacle depth and a minimum obstacle height. This removes 
driveable areas of the floor/ground from the cloud so the robot’s autonomy knows it can drive 
there. The second filter, also a passthrough filter, removes points that fall outside of a maximum 
obstacle depth and maximum obstacle height. This removes points on the ceiling or those of a 
hanging obstacle the robot can safely drive under. The final cloud, containing only obstacles, is 
then published for use by the navigation stack. The current system uses a minimum and maximum 
obstacle depth of -0.05 m and -1.0 m, and a minimum and maximum obstacle height of 0.05 m and 
1.0 m, respectively. This method of detecting obstacles is quite basic, and doesn’t work properly 
if the robot becomes tilted, as will happen during the robotic mining competition when driving on 
the uneven terrain. Future versions of this node will use a smarter method of detecting obstacles.

3.6 Localization System

3.6.1 Fusion of Wheel Odometry and IMU Data

To keep consecutive point clouds obtained with the VS-LIDAR consistent with one another 
while the robot is moving requires that the robot keep careful track of its position and orientation, 
such that over the short term its odometry is very reliable. If the odometry is too unstable, scans 
of the same obstacle might wind up in two different places, confusing the robot’s autonomous 
navigation. In initial evaluation of the VS-LIDAR testing platform, it was discovered that while 
the Create 2’s wheel odometry was fine at tracking the linear motion of the robot, it was particularly 
terrible at tracking the rotational motion. If the robot were to spin in place it would quickly lose 
track of its orientation, causing there to be noticeable misalignment in the clouds from consecutive 
panning cycles. In typical robotic systems, consecutive scans would be compared to line them up 
and correct for this error, but for the VS-LIDAR system collecting a full point cloud takes on the 
order of seconds, during which time bad rotational odometry could distort the clouds and making 
error correction harder. This necessitates accurate short term odometry.

The IMU, on the other hand, provides a very accurate orientation estimate, but doesn’t track 
the robot’s linear velocities. Thus, these orientation estimates and the linear velocity data from 
the wheel odometry are fused using an Extended Kalman Filter (EKF). The EKF is a very popular 
filter in robotics, and in the context of robot navigation is used to estimate the robot’s position, 
orientation, linear velocities, and rotational velocities, either in 2D or in 3D. The EKF estimates
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the robot’s state using an internal kinematic model, which incorporates estimates of the robot’s 
state from individual sensors. To what degree the sensors’ estimates are incorporated is determined 
by variance-covariance matrices which accompany the sensor data, describing the uncertainty in 
those measurements.

The VS-LIDAR system uses the EKF implemented by the ROS robot_localization package; 
this implementation and the underlying algorithm are described in [33]. This package also imple­
ments an Unscented Kalman Filter (UKF), an improvement over the EKF to make it more accurate. 
However, only the EKF is used in this system, as the UKF was found to require significantly more 
configuration and fine tuning to get adequate performance.

To be used with the EKF, the error in the wheel odometry and IMU data needs to be modeled 
to obtain variance-covariance matrices. For the wheel odometry, this is done with the error model 
described in [28, pp. 270-275]. This model estimates the error in both the velocity (linear and 
rotational) and pose (position and orientation) of the robot, but for this system it is only necessary 
to estimate the error in the velocity. The reason for this is that the pose estimates and errors are 
obtained from integrating the velocity estimates and errors, which is something that the internal 
motion model of the EKF already does. Because of this, and the fact that the IMU is relied on 
for orientation information, the only portions of the wheel odometry being input to the EKF are 
the linear velocities in the robot’s x and y directions. One may recall that in ROS the robot’s x 
direction is always facing forward, regardless of what orientation relative to the world the robot is 
at. This means that for a robot like the Create 2, which cannot translate side-to-side, that the linear 
y velocity is always zero. Still, it is helpful to fuse this zero velocity in the EKF, since it tells the 
motion estimator that the robot is never be able to drive side-to-side.

For the IMU data an adequate error model was not found. In testing, the orientation estimate 
was discovered to be very stable and accurate, while the rotational velocities and especially the 
linear accelerations were more prone to noise. For this reason, only the orientation of the IMU 
is fused in the EKF, with the orientation variance and covariances being set to a low, static 10-6, 
telling the filter that the data is trustworthy. The EKF has the ability to integrate the rotational 
velocities and the linear accelerations to estimate the robot’s pose over time, but testing showed 
that incorporating this data only degraded the performance of the EKF, even with the associated 
variances and covariances set relatively high. The data was simply too noisy and was not published 
frequently enough for accurate integration.

The EKF in robot_localization can be configured to operate in either 2D or 3D mode. In the 
2D mode, the robot’s state variables associated with 3D motion (velocity and rotation about x 
and y axes, velocity and acceleration along z axis) are set to zero and fused with the EKF. Since 
the VS-LIDAR testing platform is constrained to operating in planar environments, the EKF is 
configured to operate in 2D mode. This does not significantly impact VS-LIDAR system, as a
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mobile platform using it in a 3D environment should be providing its own 3D odometry, and in the 
case of the Robotic Mining Competition the competition area is approximately planar anyway.

3.6.2 ArUco Marker Localization

Even with the improved odometry, the estimate of the robot’s pose will grow without bound. A 
method of correcting for this drift is required for robots operating over the long term. Additionally, 
many robots need a means of localizing relative to some static map to complete their mission 
objectives. For example, for the Robotic Mining Competition a reliable means of locating the bin 
for material deposition is required. Knowing the location of the bin tells the robot not only where 
to go to deposit material, but also where it needs to go to mine material, as the competition area is 
split up into a starting area, an obstacle area, and a mining area. Both of these objectives can be 
completed by placing static beacons in the environment that allow a robot to know its position and 
orientation absolutely.

In 2014, researchers at Cordoba University released the open source ArUco library [34]. This 
system uses a camera to detect markers of known size and estimates the angle of and distance to 
the marker relative to the camera, which then allows the marker’s coordinates to be estimated. On 
the face of this marker is a 7x7 grid, whose cells are either black or white. The border cells of the 
grid are black, with a black and white pattern contained within to uniquely identify the marker and 
to show the camera which way is up. Figure 3.4 shows the marker used in the VS-LIDAR system, 
with the width and height of the grid being 20 inches. To accurately measure the pose of the 
marker requires that the camera be calibrated so that lens distortion can be removed from captured 
images. For this system, the Genius webcam was calibrated at a resolution of 640x480 using the 
ROS camera_calibration package. A higher resolution would’ve made the marker detection more 
accurate, but a good calibration with the camera at its native resolution of 1920x1080 could not be 
obtained. The distortion caused by the wide-angle lens was too severe for the calibration program 
to handle.
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Figure 3.4: ArUco Marker Used in VS-LIDAR System

The VS-LIDAR system uses just the one marker shown, with the position of the marker con­
sidered to be the origin of the odometry frame. This makes it straightforward to plan paths relative 
to the marker, as will be done for the Robotic Mining Competition. To set the marker as the origin 
of the odometry frame, its pose is fused in the EKF as an absolute pose estimate for the robot.

The actual detection of the markers and their 3D poses is already implemented in ROS with 
the aruco_mapping package. However, the pose has to be processed before it is fused in the EKF, 
and this is done by the aruco_pose_repack node. First, this node obtains the pose of the camera 
relative to the marker, specified by x, y, and z coordinates, and roll, pitch, and yaw. Then the pose 
is restricted to 2D, so the z coordinate, roll, and pitch are discarded; since we place the marker 
ourselves, we know that the marker will always be level with the camera, so 3D information is 
superfluous. Next, the pose is transformed so that it is relative to the robot’s center of rotation, 
to account for the fact that since the camera is offset from the center, its position relative to the 
marker changes even though the robot stays in the same place. This is done with Equations 3.1 
and 3.2, where camera_offset is the distance between the camera and the robot’s center of rotation, 
yaw is the detected yaw angle of the marker, x camera  and ycam era  are the x and y coordinates of the 
camera relative to the marker, and x robot and yrobot are the x and y coordinates of the robot relative 
to the marker, as

Xrobot = (x camera  +  camera_of f  set * cos (yaw)), (3.1)

yrobot = ycamera -  camera_of f  set * sin(yaw). (3.2)
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With the yaw of the camera and position of the robot, we now have an absolute estimate for 
the robot’s pose. However, it is not always desirable to integrate this pose with the EKF. Consider 
Figure 3.5. Here, the marker on the left-hand side denotes the starting position of the robot, the 
marker on the right-hand side denotes the position of the ArUco marker, and each grid cell is 
one square meter. The robot was slowly driven towards the marker, and the estimated pose of 
the robot was traced in green. When the robot was far away from the marker, the pose was very 
unstable, oscillating by about two meters. This oscillation gradually decreased as the robot got 
closer and closer to the marker. The cause of this variability is the fact that at greater distances, the 
marker becomes smaller and smaller in the camera’s view, being represented by fewer pixels. This 
decrease in resolution of the marker makes it harder to estimate its pose, especially the marker’s 
rotation. To address this, the aruco_pose_repack node throws away all pose estimates where the 
estimated distance is greater than one meter, as poses obtained closer than this were observed to 
be pretty stable. Another solution would be to use a higher resolution camera, but this would make 
the system more expensive, not to mention increase the processing requirements to find markers.
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Figure 3.5: ArUco Pose Estimates with No Filtering

When the node has decided to keep a pose estimate, it publishes it to make it available to the 
EKF. To be compatible with the EKF, the pose needs an associated variance-covariance matrix. 
The EKF needs to be told that the pose estimate is trustworthy; if the system has been running for 
a while and significant errors in odometry have been accumulated, if the covariance in the marker 
pose is too high the EKF wont trust the sudden jump in position over its own internal motion model. 
Thus, the marker pose is given a low fixed covariance of 10-6. The result of all this can be seen in 
Figure 3.6, which shows the reported pose of the robot when staring at the marker head-on from 
a distance of 75 cm, where the base_footprint marker shows the pose of the robot and the odom
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marker shows the pose of the ArUco marker. The distance between the two, as measured with the 
ArUco marker detection, was 75.8 cm; a difference of only 8 mm is certainly within tolerance.

: ■ i —base_footprint odom

Figure 3.6: ArUco Pose Estimate at a Distance of 75 cm

3.6.3 ROS Navigation Stack: Overview & Configuration

As ROS has been used for indoor mobile robotics for a number of years, there already exists a 
rich set of packages for autonomous 2D navigation and localization known as the navigation stack. 
Because the mining robot will be operating in an approximately planar environment, it makes 
sense to take advantage of these preexisting tools. At the core of this stack is the move_base node, 
which ties together the other packages, implementing a system that, given a waypoint to navigate 
to in the world and sensor data providing the locations of obstacles, attempts to move the robot 
to the waypoint. To accomplish this requires two key components, costmaps and path planning. 
Essentially, the costmaps keep track of where obstacles are in the world and are used to plan paths 
around obstacles to goal locations. The following sections will go into greater detail about these 
two components and their configuration.

3.6.3.1 Costmaps

Costmaps are 2D maps which discretize the robot’s environment into a grid, and store infor­
mation on whether each cell is likely to be occupied by an obstacle or not. These maps are built in 
layers, of which there are several standard types:

• Static Layer: This layer extracts obstacles from a map of the environment provided to the 
navigation stack. This map can either be compiled beforehand or created on the fly as a 
robot explores its environment; in the previous case, this map would likely contain only 
macro features such as walls and furniture which are not expected to move.
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• Obstacle Layer: This layer stores information on which cells in the costmap are occupied 
by obstacles. The obstacle layer can either be 2D or 3D: in 3D the 2D cell grid is turned into 
a 3D grid of voxels, or cubes. Given sensor data the obstacle layer performs two primary 
tasks: marking and clearing. In marking, the system checks whether received points fall 
within a range defined by a minimum and maximum obstacle height. If so, the cell or voxel 
that point occupies is marked in the obstacle layer. Clearing obstacles from the costmap is 
done using raytracing; for each data point, a line is traced from the sensor’s origin to that 
point, and if no data points occupy the cells or voxels that the line passes through they are 
marked as no longer containing obstacles. The primary purpose of using a 3D obstacle grid 
is so that raytracing marks and clears obstacles properly when given data from 3D sensors. 
Regardless, the obstacle layer is projected down to 2D when used for navigation.

• Inflation Layer: Using information from the obstacle layer, the inflation layer creates a 
potential field around obstacles to describe the safety with which a robot can plan a path 
through the costmap’s cells. This potential field can be split up into cells that will definitely 
result in collision, cells that will possibly result in collision, and cells that will not result in 
collision. The potential of each cell is given a value from 0 to 254, with 0 being completely 
free space and 254 being space occupied by a sensor reading of an obstacle. Given a footprint 
describing the shape of the robot, the costmap calculates the inscribed and circumscribed 
radii. Cells one inscribed radius or closer an obstacle cell are given a value of 253 to indicate 
that the robot will be too close to the obstacle, most certainly colliding. From there, the 
cost is exponentially decayed as the distance from the obstacle cell increases. Cells that are 
further away than the inscribed radius but closer than the circumscribed radius are decayed 
to be anywhere between 252 and 128, to indicate the robot could collide with an obstacle 
if it were oriented in the wrong way. The rest of the cells that are further away than the 
circumscribed radius but within a user-specified inflation radius are decayed from 127 down 
to 1. This decay encourages the robot to give obstacles a wider berth; if all cells outside 
the circumscribed radius were marked as free, the path planning would naturally be greedy 
and plan the shortest path through the free space, causing it to drive right next to obstacles, 
possibly colliding with them due to an imperfect view of the world or sensor noise.

To help visualize exactly what a costmap looks like, Figure 3.7 shows the VS-LIDAR looking 
at some obstacles and Figure 3.8 shows the resulting costmap. In the VS-LIDAR system, costmaps 
are comprised of a 2D obstacle layer and an inflation layer; as there is no map to provide to the 
navigation stack a static layer is not used. For navigation, two costmaps are kept: a local costmap 
which is updated frequently and only stores information on the immediate surroundings of the
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robot, and a global costmap, which is updated less frequently but stores information about all the 
places the robot has been.

Figure 3.7: Costmap Example Environment

Figure 3.8: Costmap Example

Table 3.1 summarizes the important parameters in the VS-LIDAR’s costmap configuration. 
The inflation radius around obstacles is set to 1 m, which provided the best performance during 
testing, obstacles within 2.5 m of the robot are added to the costmap and data points within 3.0 m 
of the robot are used to raytrace points out of the costmap. The raytrace range is slightly longer
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than the obstacle range to prevent the costmap from adding obstacles to the edge of the map that it 
cannot later raytrace away. The observation persistence is 6.0 seconds, meaning that even if a cell 
is cleared by raytracing it will stay marked as an obstacle for that length of time; the reason for 
this is explained in Section 4.5. The rest of the parameters describe the size, resolution, and update 
rates of the local and global costmaps. Since the global costmap is much bigger than the local 
costmap, its resolution is cut in half and its update rate is one-fifth that of the local costmap. As 
the cloud2obstaclemap node only contains obstacles, the specification of minimum and maximum 
obstacle height is not important so long as the range includes all points in the obstacle cloud.

Table 3.1: Important Costmap Parameters

Parameter Value

Obstacle Inflation Radius 1.0 m
Obstacle Range 2.5 m
Raytrace Range 3.0 m
Observation Persistence 6.0 s
Local Costmap Update Rate 5 Hz
Local Costmap Resolution 5 cm
Local Costmap Size 6 m by 6 m
Global Costmap Update Rate 1 Hz
Global Costmap Resolution 10 cm
Global Costmap Size 100 m by 100 m

3.6.3.2 Path Planners

The second major component of the navigation stack are the path planners, and there are two 
of these as well. The first is the global planner, which uses the global costmap to plan a path 
from the robot’s starting position to its ending position. This planner uses Dijkstra’s algorithm to 
find a minimum cost path through the costmap’s cells. The global path is used as a guide for the 
second planner, the local planner, which utilizes the local costmap. There are a few local planners 
available in ROS, but the one used for the VS-LIDAR system uses the Dynamic Window Approach 
(DWA) algorithm.

In this algorithm, the control space of the robot, i.e. the range of speeds at which the robot can 
turn and drive, is discretely sampled. Each combination of linear and rotational velocities is used 
to produce a circular trajectory through the costmap by simulating what would happen if the robot 
drove at those speeds for a set amount of time. Each of these trajectories are scored based on their 
proximity to obstacles, their proximity to the navigation waypoint, their proximity to the global 
path, and the robot’s driving speed. Trajectories that cause the robot to collide with obstacles are
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immediately discarded. Then, the robot is commanded to drive at the velocity associated with the 
highest scoring trajectory. This process repeats until the robot has reached its goal or has failed in 
some unrecoverable way. For visualization, an example of these planned paths being used in the 
VS-LIDAR system is shown in Figure 3.9, where the robot was told to navigate around the white 
bucket in the obstacle field shown in 3.7. The green circle in the figure represents the footprint of 
the robot, the blue line represents the global path, and the red line illustrates the local path.

Figure 3.9: Path Planning Example

Table 3.2 summarizes the important parameters in the VS-LIDAR’s local planner configuration. 
The first set of parameters simply describe the allowable motions of the robot. It should be noted 
that the Create 2 has actual velocity limits of 0.5 m/s and 4.25 rad/s for the linear and angular
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velocities, respectively, but the speed limits for the planner a set below this. This is to compensate 
for the slow scanning speeds of the LIDARs, making the system safer by giving it more time to 
detect obstacles. The yaw goal tolerance and xy goal tolerance simply state how far the robot has 
to be from a goal point to consider the navigation successful, and these help if the waypoint ends 
up being right on top of an obstacle. The final set of parameters controls the forward simulation of 
the DWA algorithm. Sim time is how far out in the future the trajectories should be simulated. If 
the value for this is too low, then the system won’t have time to plan optimal trajectories through 
tricky spaces like narrow passageways; however, since the trajectories are simple circular ones, if 
the sim time is too long it will produce inflexible paths. From testing, a sim time of 2 seconds 
seemed appropriate. The sim granularity is simply how often along the trajectory the system 
checks whether the path has collided with an obstacle or not. How finely or coarsely the robot’s 
allowable linear and rotational velocities are discretized is controlled by the Vx and Vtheta samples 
parameters. A low value for Vx samples was found to be sufficient due to how slowly the robot 
moves. Vtheta samples was made higher than Vx samples because of the wider range of allowable 
turning speeds.

Table 3.2: Important Local Planner Parameters

Parameter Value

Max Velocity X 0.15 m/s
Min Velocity X 0.05 m/s
Max Velocity Theta 3.5 rad/s
Acceleration Limit X 2.0 m/s2
Acceleration Limit Theta 2.0 rad/s2
Yaw Goal Tolerance 0.157 rad
XY Goal Tolerance 0.25 m
Sim Time 2 s
Sim Granularity 0.2 s
Vx Samples 6
Vtheta Samples 20
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Chapter 4 System Performance
4.1 VS-LIDAR Characteristics

This section summarizes some of the basic characteristics of the VS-LIDAR system. To start 
with, Figure 4.1 provides an illustration of the VS-LIDAR’s field-of-view (FOV), with the FOV of 
the front-sweeping LIDAR highlighted in blue and the FOV of the side-to-side sweeping LIDAR 
highlighted in red. This illustration assumes there to be a ground plane beneath the robot to make it 
more realistic. One can think of these views as being constructed by rotating the planar slice of the 
environment obtained from each LIDAR about their servo’s axis of rotation. As the plane sweeps 
through space it constructs the 3D view. It is important to note that this FOV is not instantaneous, 
but rather it is the FOV of one complete panning cycle for each LIDAR. One can see that the side- 
to-side sweeping LIDAR does not capture much of the scene in front of the robot, but obtains a 
wide view of things to the sides of the robot. The front-sweeping LIDAR, on the other hand, can 
see much more of the space in front of the robot and some space behind the robot as well, but does 
not see as much to the sides of the robot. What it does see to the side is about a meter off of the 
ground, so its side view is not as useful as the view from the side-to-side LIDAR.

Front Sweeping LIDAR 
Side-to-Side Sweeping LIDAR

Figure 4.1: VS-LIDAR Configured Field-of-View
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Table 4.1 lists some basic specifications of the VS-LIDAR system. In comparison to the Kinect 
v1 and v2, whose distance measurements alone take up 18.5 MB/s and 31.3 MB/s, respectively, 
the bandwidth usage of the VS-LIDAR is very low, making it much easier for the control laptop 
to process the data and interface with other peripherals on the bus. The LIDARs can be panned a 
maximum speed of 114 RPM, but testing showed 25% of this and lower to be more than adequate. 
The average power consumption of the VS-LIDAR, set to pan at a baseline speed of 7.5 RPM, was
4.2 W, though one can expect this value to increase if they pan the servos faster. The last parameter 
describes the minimum bounding box the sensor could be fit inside while still providing clearance 
for the LIDARs.

Table 4.1: VS-LIDAR Basic Specifications

Specification Value

Data Points per Second 3700
USB Bandwidth Usage 17.3 kB/s
Maximum Panning Speed 114 RPM
Average Power Consumption (7.5 RPM) 4.2 W
Minimum Sensor Bounding Box (w x l x h) 22 cm x 22 cm x 32 cm

4.2 Odometry Tests

To determine the level of improvement in odometric localization from fusing the wheel odom- 
etry with IMU data, a test was performed where the robot was driven in a full lap around one floor 
of our building, with the robot starting and stopping in the same position. The robot was driven by 
a human operator at a speed of around 0.5 m/s. Figure 4.2 shows the path of the robot as tracked 
by both the raw wheel odometry and by the filtered odometry, with the obtained map overlaid for 
better visualization of the testing region. One can see from this figure that the filtered odometry 
performed much better than unfiltered odometry, with the unfiltered ending position being 19.2 
m away from the actual ending position, and the filtered ending position being 2.0 m away. By 
examining the path of the unfiltered odometry, one can see that most of this error is attributable 
to incorrect tracking of the robot’s rotation. Even when the robot is driving straight, the wheel 
odometry thinks the robot is arcing slightly to the left, and over time these errors accumulate. With 
the IMU providing a superior orientation estimate, drift in the robot’s rotation becomes much less a 
concern. However, one can see that this filtering is unable to correct for drifts in position. Without 
loop closures, this drift would grow without bound.
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Figure 4.2: Comparison of Filtered Odometry to Unfiltered Odometry

To demonstrate the use of the ArUco marker to correct for drifts in position, the robot was 
driven along the same path as before, this time with an ArUco marker placed near the starting 
position. The robot was started facing the ArUco marker, and was again driven by hand with a 
speed of about 0.5 m/s. Figure 4.3 shows the path of the filtered odometry. When the robot saw 
the marker again at the end of its run, its position jumped back to its starting position. One can see 
in the lower right corner of the figure, however, that there was a brief amount of overshoot in its 
position estimate before it settled on the correct value. This suggests that perhaps the ArUco pose 
filtering should be a bit more robust than a simple distance threshold, if a brief incorrect position 
turns out to be a problem.
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Robot Trajectory with Aruco Loop Closure
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Figure 4.3: Using ArUco to Perform Loop Closures

4.3 Stochastic Scan Dithering

To illustrate the effect of randomly dithering the LIDAR rotation rates, an experiment was 
performed where the robot was kept stationary and the point clouds from two consecutive panning 
cycles were collected. A small (10 cm x 7 cm x 9 cm) 3D printed head was placed about a meter 
away from the robot in the field-of-view of the side-to-side sweeping LIDAR; this setup is shown 
in Figure 4.4. Figure 4.5 (a) shows the resulting cloud without dithering, and Figure 4.5 (b) shows 
the results with it.
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Figure 4.4: Random Dithering Test Setup

(a ) W ithout Random  Dithering (b ) With Random  Dithering

Figure 4.5: An Illustration of the Effect of Dithering on Point Cloud Data

One can see from Figure 4.5 (b) that with random dithering the scan lines are nice and spread 
out. The system was able to detect the head, as noted by the perturbation in the scan lines marked by 
the red box. In comparison, one can see from Figure 4.5 (a) that without random dithering the scan 
lines are much more clumped together, leaving large slices of unscanned space. In fact, the head 
happens to fall within one of these unscanned slices, so without dithering the system did not detect 
it. Thus, it is clear that random dithering improves the detection of small obstacles. However, 
the random nature of the dithering meant that the scan-line placement wasn’t always optimal.
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Sometimes the lines would be dithered very well, and sometimes not so much. Additionally, the 
system didn’t always fail to detect the head without dithering, as over time imperfect timing control 
of the panning would cause the scan lines to shift around on the map. However, it was clear from 
observing both dithered and non-dithered clouds for a while that on the whole, random dithering 
was able to detect the head much more consistently.

4.4 Obstacle Detection Test

The objective of this test was to determine the obstacle detection capabilities of the front- 
sweeping LIDAR and side-to-side sweeping LIDAR individually, and show how the two sensors 
work together to make up for their individual downsides. For this test, the VS-LIDAR was placed 
in a stationary position while a variety of obstacles were placed around it: a measuring tape; a 
coffee cup; a small, yellow box; a tube of sanitizing wipes; a white, upright panel; and a Fluke 
instrument case. Figure 4.6 shows this setup. Each LIDAR was panned at a baseline speed of 
about 7.5 RPM, with a random offset between ±5 RPM applied every 500 ms to help distribute the 
points more evenly throughout the scanned region. Point clouds from each sensor were observed 
to see which obstacles they could see and which they couldn’t.

Figure 4.6: VS-LIDAR Obstacle Detection Test Setup

The following point clouds represent two consecutive panning cycles worth of point cloud data, 
and the marker with the red, green and blue axes represent the position of the robot, with the red 
axis pointing forward, with both of these things to make it easier for the reader to connect the 
data to the real-world scene. Figure 4.7 shows the point cloud obtained with the front-sweeping
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LIDAR. As one can see, this LIDAR gives a fairly wide view of what is in front of the robot, 
being able to see the white panel, the tube of sanitizing wipes, the coffee cup, and the yellow box. 
However, it is unable to see the measuring tape, which is more directly in-front of it, or the Fluke 
instrument case, that is to its right. Now, the sensor could be made to see the measuring tape if 
the side-to-side LIDAR was removed and the front LIDAR was placed further forward and made 
to pan more deeply, but the primary purpose of the front-sweeping LIDAR is to quickly scan area 
in front of the robot to capture information about upcoming obstacles, either static or dynamic, so 
that the system can more effectively plan paths to navigation goals. To detect all obstacles on its 
own its panning range would have to be extended, lowering the update rate of the sensor, forcing 
the robot to have to drive more slowly and further delaying its detection of both static and dynamic 
obstacles.
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Figure 4.7: Obstacles Detected with Front Sweeping LIDAR

Now consider Figure 4.8, which shows the point cloud obtained from the side-to-side sweeping 
LIDAR. This sensor was able to see the coffee cup, the tape measurer, the Fluke instrument case, 
and a portion of the white panel. As opposed to the front-sweeping LIDAR, which is designed to 
give a wide view of what is in front of the robot, the side-to-side sweeping LIDAR is designed to 
not only give a detailed view of what is to the sides of the robot, but is angled downward so that a 
spot directly in-front of the robot is always updated in real-time. Also, by observing the coffee cup, 
one can see that the side-to-side sweeping LIDAR maps close, small obstacles with much greater 
fidelity than the front-sweeping LIDAR panning at the same speed. This was not some chance 
observation caused by the random scan dithering, but was in-fact consistently observed throughout 
the experiment and is present without dithering as well. The higher fidelity and real-time scan
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region of the side-to-side sweeping LIDAR allow the robot to quickly respond to obstacles the 
front-sweeping LIDAR could’ve missed, while the side-view allows the robot to more quickly 
plan paths that involve rotations. Of course, this LIDAR has a longer panning range than the front- 
sweeping LIDAR (90° vs. 50°) and its real-time update region is quite small, so it is less adept at 
dealing with dynamic obstacles.

Figure 4.8: Obstacles Detected with Side-To-Side Sweeping LIDAR

Figure 4.9 shows the combined view of the obstacle field from the two sensors. Using a pair 
of LIDARs gives the VS-LIDAR system a wide field-of-view of its environment and provides it 
with a much better chance of detecting obstacles. This also allows the system to rotate the LIDARs 
more quickly than would be possible with just one LIDAR, as a single LIDAR system would have 
to pan more slowly to get a good view of the field, which allows the point clouds to have a better 
refresh rate and allows the robot to complete its tasks more quickly.
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Figure 4.9: View of the Obstacle Field Using Both LIDARs

4.5 Navigation Tests

To demonstrate the possibility of using the VS-LIDAR system for autonomous navigation, the 
obstacle course shown in Figure 4.10 was constructed. With the robot starting in the position 
shown, it was given a navigation waypoint near the door. Small obstacles — the white mug and 
the small tea box — were specifically placed so that the robot would run into them if it was simply 
following the edges of the larger objects. These navigation trials were performed several times.

In a majority of trials the robot would expertly navigate the course, carefully skirting the ob­
stacles to reach its destination; however, it some trials it would hit the tea box and/or the coffee 
mug, sometimes even clipping the green box. This was not an issue of not seeing these obstacles, 
as the robot was moving and scanning slowly enough that it saw them pretty consistently. The 
problem was that sometimes it would stop next to a small obstacle to plan its way around it, and 
the LIDARs would no longer be able to see it. This would cause the costmap to forget about the 
obstacle and thus the robot would drive right into it, thinking it to be empty space. Additionally, 
the robot would sometimes forget about obstacles that weren’t in its field-of-view, but this wasn’t 
consistent.

The cause of this is the fact that the obstacle maps are being made in 2D. When the system 
doesn’t see an obstacle, but sees a point behind it, it traces a ray from the robot to that point and 
clears all costmap cells in-between. Since the 2D obstacle map projects all points to the XY-plane 
for obstacle marking and raytracing, this can remove obstacles it can’t see. A workaround to this 
is to increase observation persistence so that obstacles stay within the costmap a set amount of 
time, giving the robot time to navigate around unseen obstacles. However, this can still fail if the
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Figure 4.10: Obstacle Course for Navigation Testing

robot takes too long to navigate around, makes the system more sensitive to outlier data points, and 
makes the system slower to clear space that moving obstacles used to occupy.

The more natural solution is to use 3D obstacle maps and 3D raytracing, since then obstacles 
outside of the robot’s field-of-view shouldn’t be phased out of existence. An attempt was made to 
configure the costmaps to build 3D obstacle maps, using the LaserScan data as input instead of the 
point clouds so that rays would be traced from the origin of the laser sensor itself instead of from 
the robot’s origin. In 2D, it was fine to start the raytrace from the robot’s origin rather than the
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sensor origin since everything is projected down to the XY-plane, but when raytracing in 3D space 
it is much more important to start at the data’s exact origin so that the correct voxels are cleared. 
However, the 3D obstacle maps never quite worked. In particular, the raytracing still didn’t work 
properly, as the costmap was hardly able to clear obstacles at all.

Back to the 2D obstacle mapping, a quick set of tests was performed to evaluate the dynamic 
obstacle avoidance capabilities of the robot. In these trials, the robot was given a navigation way­
point and a person would get in its way, sometimes walking in front of it from the side and some­
times walking towards it through its waypoint. Given that humans are relatively large obstacles 
that the front-sweeping LIDAR is almost certain to see immediately, in all cases the robot was able 
to stop, navigate around the individual, and continue towards its goal.

In conclusion, these tests demonstrated that the VS-LIDAR system has the potential to be used 
for autonomous operation in areas where both static and dynamic obstacles are present. However, 
the ROS navigation stack requires significantly more configuration and testing to work robustly 
with these sensors, or a custom navigation package needs to be created that takes into account 
the unique configuration of the VS-LIDAR. The first solution is preferred, since the ROS naviga­
tion stack is constantly maintained and updated, and already in use by a large number of robotic 
systems.

4.6 Detection of Black Obstacles

As previously mentioned, LIDAR sensors have trouble detecting black objects since they ab­
sorb laser light. It depends on what type of black color it is: for example, the VS-LIDAR was 
able to detect a black coat just fine, but in general one can expect a harder time. To demonstrate 
this shortcoming of the VS-LIDAR system the ArUco marker was placed 0.5 m away from the 
robot (indoors). The resulting point cloud is shown in Figure 4.11. One can see the system was 
unable to see the black parts of the marker. The same result was obtained when the marker was 1.5 
m away or more. However, it was discovered that at 1.0 m away the front-sweeping LIDAR was 
able to detect most of these black spots, save for a band near the bottom, as shown in Figure 4.12
(a), and by slightly tilting the marker backwards the whole of it could be seen, as shown in Figure 
4.12 (b). This lead to a suspicion that the system could scan black surfaces as long as the laser hit 
them at an angle that would reflect the non-absorbed light nearly directly back towards the imaging 
sensor, and sure enough with the laser’s scanning plane perpendicular to the marker’s planar face 
it was able to see the black section with much more consistency, out to about two meters. Thus, it 
appears that these LIDARs were made just powerful enough to detect black surfaces head on, and 
that the act of rotating them compromises their ability to see black surfaces consistently. To clarify, 
the system can see black obstacles that are at about the same level as the front-sweeping LIDAR, 
as it will hit them head on, but will miss those low to the ground if they are the wrong type of
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black. This is unfortunate, but may not be a terribly big deal. Depending on where the VS-LIDAR 
is operating, most obstacles the robot will typically encounter will probably not be so uniformly 
black as to be completely invisible. This is especially true for the Robotic Mining Competition, 
where there will be no black obstacles whatsoever.

Figure 4.11: LIDAR View of ArUco Marker from 0.5 Meters Away

(a ) W ithout Tilt (b ) W ith Tilt

Figure 4.12: LIDAR View of ArUco Marker from 1.0 Meters Away
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4.7 Performance in Sunlit Environments

A primary reason for developing the VS-LIDAR system was to create a low-cost 3D sensor 
capable of operating in a wider range of environments than cheaper depth cameras. In particular, 
depth cameras have more trouble operating in the presence of sunlight, being primarily designed 
for indoor spaces. To illustrate this, the capability of the VS-LIDAR to detect a target outdoors was 
compared to that of a Kinect v1, a structured-light depth camera, and a Kinect v2, a time-of-flight 
depth camera. The target was a white rectangle, 22 inches wide by 23.75 inches tall, and in all tests 
was placed 1.5 meters away from the sensor under investigation, with the sensor looking directly 
at the target.

The first test took place on a somewhat overcast day, with the ambient light level at the target 
being around 10,000 lux, as measured by the TMD4906 ALS optical module inside the Samsung 
Note 8 smartphone. This test involved the Kinect v1 and the VS-LIDAR system, and the testing 
setup for the VS-LIDAR is shown in Figure 4.13. The VS-LIDAR was able to see the target and 
the surroundings with ease, as shown in Figure 4.14, while the Kinect was unable to see anything 
whatsoever. However, it was discovered in this test that the increased illumination level increased 
the noise in the LIDAR data, resulting in a significant increase in the number of erroneous distance 
measurements when the LIDARs were pointed towards the sky. This garbage data can be easily 
seen as the sparse points around the left edge of Figure 4.14, where there was, in-fact, empty space. 
This data would be easy to remove with statistical outlier filtering, but no such filtering is done in 
the current system. The reason for this is that if the LIDARs are scanning quickly, a small obstacle 
might be represented by just a few points and could get removed by such filtering. It is much safer 
for the robot to detect false positives then to accidentally get rid of an obstacle.

Figure 4.13: Outdoor Perception Test #1 Setup VS-LIDAR
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Figure 4.14: VS-LIDAR Outdoor Point Cloud on Overcast Day

The test was performed again with just the VS-LIDAR on a brighter day, when the sensor and 
marker could be placed in direct sunlight, no cloud or fog cover. The ambient light level measured 
at the marker was about 120,000 lux, and the VS-LIDAR was placed the same distance away as 
before. Figure 4.15 shows the resulting point cloud, with the sensors being shaded but with the rest 
of the surroundings illuminated. Based on visual inspection, the number of erroneous data points 
didn’t seem to increase from the previous outdoor trial, and while the LIDARs were able to see 
the pavement and some of the surrounding snowbanks, the marker was simply too bright for the 
sensors to detect. Of greater negative impact, the LIDARs would shut off their laser emitters when 
hit with direct sunlight, and they wouldn’t come back on until the whole LIDAR sensor was reset. 
At some point, the LIDAR’s microcontroller must decide that its laser isn’t powerful enough to 
overcome the ambient light and that it might as well give up. Note, this behavior was replicated 
in the lab by shining an intensely bright light at the LIDAR, so it is not caused by some special 
property of sunlight.
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Figure 4.15: VS-LIDAR Outdoor Point Cloud in Direct Sunlight

A final outdoor test compared the VS-LIDAR with the Kinect v2. As before, the marker was 
placed 1.5 meters away from each sensor, and the illuminance at the target was measured to be 
about 180,000 lux. This setup is shown for the VS-LIDAR in Figure 4.16 and for the Kinect v2 
in Figure 4.17, with Figure 4.18 showing the Kinect’s field-of-view. A strip of cardboard was 
placed behind the front-sweeping LIDAR to shield it from direct sunlight. Figure 4.19 shows the 
resulting cloud for the Kinect v2 and Figure 4.20 shows the resulting cloud for the VS-LIDAR. 
Both sensors were for the most part unable to see the wall or the marker as they were too bright, 
though the Kinect was able to see a small portion of the wall shaded by the marker and some of 
the marker’s base. It also saw some of the nearby ground. The LIDARs, on the other hand, were 
able to see much more of the ground further away that the Kinect, consistently getting scans up to 
three meters away (each grid cell in the cloud figure is one square meter).
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Figure 4.16: Outdoor Perception Test #3 VS-LIDAR Setup

Figure 4.17: Outdoor Perception Test #3 Kinect v2 Setup
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Figure 4.18: Outdoor Perception Test #3 Kinect v2 View From Color Camera
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Figure 4.19: Outdoor Perception Test #3 Kinect v2 Cloud
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Figure 4.20: Outdoor Perception Test #3 VS-LIDAR Cloud

Thus, the performance of the VS-LIDAR is degraded less in the presence of sunlight than 
cheaper structured-light and time-of-flight depth cameras. However, it is unable to detect super- 
bright objects, and the sensors shut off if they are hit by direct sunlight. Curious if the second 
problem could be solved by giving the sensors a "pair of sunglasses," a quick test was performed 
where a piece of cut up sunglasses lens was placed over the laser emitter. This prevented the 
LIDARs from shutting down when hit with direct sunlight, but it also reduced the amount of 
usable data points, and the curve of the lens distorted the point cloud. So this shortcoming seems 
solvable with optical shielding, but it appears a cheap, quick fix would be too suboptimal, so the 
covering will probably have to be designed around the specific properties of the laser light.

4.8 Distance Measurement Comparison

The purpose of this test was to compare the depth measurement accuracy of the VS-LIDAR, 
Kinect v1, and Kinect v2 as a function of distance. The same white marker from the sunlight tests 
was placed in front of each sensor at distances ranging from 0.25 m to 4.0 m in 0.25 m increments 
(indoors), the measured distance was recorded, and the maximum absolute error (MAE) between 
the measured distance and the actual distance was calculated. Figure 4.21 shows the setup for this 
test for the VS-LIDAR with the marker placed at a distance of one meter away, with a measuring 
tape being used to obtain the ground truth for the measurements. The results are shown in Table 
4.2 and Figure 4.22. As expected, the VS-LIDAR starts out strong at short distances as it uses 
triangulation, with the Kinect v1 and Kinect v2 unable to detect the marker until they were 0.5 m 
and 0.75 m away, respectively. However, after about 1.5 m the accuracy of the VS-LIDAR started 
rapidly growing, to where at a distance of 4 m the measured distance was 30 cm greater. This is in
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contrast to the Kinect v1, whose error started picking up around 2.75 m and was 7 cm off at 4 m, 
and the Kinect v2, which was within 1 cm of the actual distance the whole time.

Figure 4.21: Distance Measurement Accuracy Test Setup
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Table 4.2: Distance Measurement Accuracy for VS-LIDAR and Kinect v1, and Kinect v2

VS-LIDAR Kinect v1 Kinect v2

Distance (m) Meas. (m) Error (m) Meas. (m) Error (m) Meas. (m) Error (m)
0.25 0.25 0.00 - - - -
0.50 0.50 0.00 0.50 0.00 - -
0.75 0.75 0.00 0.74 0.01 0.75 0.00
1.00 1.00 0.00 0.99 0.01 0.99 0.01
1.25 1.25 0.00 1.24 0.01 1.24 0.01
1.50 1.51 0.01 1.50 0.00 1.49 0.01
1.75 1.78 0.03 1.74 0.01 1.75 0.00
2.00 2.05 0.05 2.00 0.00 2.01 0.01
2.25 2.32 0.07 2.25 0.00 2.26 0.01
2.50 2.59 0.09 2.50 0.00 2.50 0.00
2.75 2.87 0.12 2.75 0.00 2.75 0.00
3.00 3.17 0.17 3.02 0.02 3.00 0.00
3.25 3.47 0.22 3.28 0.03 3.25 0.00
3.50 3.77 0.27 3.52 0.02 3.51 0.01
3.75 4.04 0.29 3.80 0.05 3.76 0.01
4.00 4.30 0.30 4.07 0.07 4.01 0.01

Distance from Marker (m)

Figure 4.22: Distance Measurement Accuracy for VS-LIDAR, Kinect v1, and Kinect v2
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Thus, while the VS-LIDAR is able to see obstacles much closer to itself than the Kinect v1 
and v2, it has worse accuracy at maximum range. However, after measuring the distance with 
the VS-LIDAR in several more trials, the error as a function of distance was found to be very 
consistent. Since it is known that the error in distance measurement for triangulation LIDARs is 
proportional to the square of the distance, the error was modeled with a second-order polynomial 
using MATLAB. Using this model an equation was obtained for estimating the actual distance 
given the measured distance, where dm eas  is the measured distance, error is the estimated error in 
that measurement, and dest is the rectified distance estimate:

dest = dm eas -  error = -0.029(dm e a s)2 +  1.0361dm eas -  0.0057. (4.1)

The xv11_raw2scan_wtf node was modified to rectify the distance measurements with this 
model, then a new set of distance measurement trials were performed for evaluating this rectifica­
tion. The results are shown in Table 4.3. One can see that the rectified distance measurements are 
much more accurate, and that while the error still starts to climb towards the end, the measured 
distances are much closer to the actual distances than before.

Table 4.3: Distance Measurement Accuracy for VS-LIDAR after Error Modeling

Distance (m) Meas. (m) Error (m)

0.25 0.25 0.00
0.50 0.50 0.00
0.75 0.76 0.01
1.00 1.00 0.00
1.25 1.25 0.00
1.50 1.50 0.00
1.75 1.75 0.00
2.00 2.00 0.00
2.25 2.25 0.00
2.50 2.50 0.00
2.75 2.75 0.00
3.00 3.00 0.00
3.25 3.24 0.01
3.50 3.47 0.03
3.75 3.72 0.03
4.00 3.96 0.04

To summarize the results of these tests, the VS-LIDAR system is much more capable of scan­
ning nearby objects than the Kinect sensors. However, the error of the distance measurements 
quickly increases as the distance increases, especially in comparison to the Kinect v2, which had
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practically no error over the range of measured values. This error was found to be deterministic, 
though, so the distance measurements were easily rectified with a second-order polynomial func­
tion. Even without rectifying though, having a bit of error in the measurements at long range is 
not that big of a problem. Long range accuracy is only necessary for robots that move quickly; the 
VS-LIDAR is designed for slow moving robots, so as it gets closer to obstacles it will have time to 
rescan them and get a more accurate distance reading. At the cost of some long range accuracy, the 
VS-LIDAR is able to detect obstacles much closer to it than the Kinect sensors, which is important 
for safely navigating through the environment.
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Chapter 5 Case Study: Adaptive Scan Dithering
5.1 Introduction

Throughout the development of the VS-LIDAR system, there has always been the question of 
what panning speeds and rotation limits should be applied to each LIDAR to obtain an optimal 
balance between the system’s real-time capabilities and the 3D spatial coverage of its point clouds. 
Additionally, it is clear that the stochastic scan dithering is suboptimal. We wondered if there 
was an intelligent way to dither the sensors, such that consecutive scans of the same region would 
spread the scanned points around more evenly. During a panning cycle, the sensor would hit 
regions that were missed in the previous panning cycle, guaranteeing an increase in point cloud 
resolution and decreasing the chances of failing to see a small obstacle. We were also curious if 
this intelligent dithering could be used by the robot while moving in addition to while stationary. 
It is easier to quantify improvements due to dithering while stationary, as without it scan lines 
from consecutive panning cycles will tend to overlap one another, but it is much less obvious when 
the robot is moving, since its perspective of the environment and its distance to obstacles changes 
constantly.

In the book Topographic Laser Ranging and Scanning: Principles and Processing, the authors 
illustrate the effectiveness of a specific dithering pattern when performing aerial surveys using a 
LIDAR-equipped unmanned aerial system (UAS) [35, pp. 150]. This dithering not only helps 
the data points be more equally distributed, but also improves the detection of powerlines and 
building edges. But finding an effective dithering pattern for ground-based systems is much less 
straightforward. Consider the long-distance, birds-eye view that an aerial surveyor enjoys; from 
the top-down, the UAS has an approximately 2D perspective, so dithering patterns need only be 
two dimensional. For a ground-based robot, however, a 2D dither pattern is no longer sufficient, 
as a robot’s perspective of features in the environment can change drastically as it is allowed to 
move about. Thus, dithering 3D point cloud data for a system moving through its environment 
rather than above it requires a movement-aware dithering algorithm that is adaptable to significant 
changes in perspective.

Neural networks are systems that are loosely modeled on how the human brain works, and 
research into them is very active because they can theoretically be used to model any function. 
They consist of a collection of nodes called neurons that are connected to one another. Neurons 
can have one or more numerical inputs, and each input is assigned a weight. Inputs are multiplied 
by their corresponding weight, then summed together to obtain a single numerical result. This 
result is then modified using some activation function (of which there are many different types) 
and then output by the neuron. Most neural networks consist of layers of neurons, where the 
outputs of neurons in one layer feed forward into the inputs of neurons in the next layer. Each of
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these networks has an input and output layer, with any number of layers in the middle referred to 
as hidden layers.

Research into neural networks has been waxing and waning in popularity since it first began 
in 1943 [36], and up until recently the community at large thought that neural networks had little 
prospect of being useful for artificial intelligence. But in 2012, researchers at the University of 
Toronto trained a deep convolutional neural network to classify 1.2 million images from the Ima- 
geNet LSVRC-2010 contest into 1000 distinct classes [37]. The network was able to provide the 
correct classification for the images on the first try 62.5% of the time, and the correct classification 
was within the top five best guesses 83% of the time. They entered their network in the ImageNet 
LSVRC-2012 contest, and the correct answer was in the top five best guesses 84.7% of the time, 
considerably higher than the next best competitor at 73.8%; so much so, in fact, that their results 
led to a renaissance in using neural networks in artificial intelligence research. This revival has 
seen the use of large neural networks being branded as "deep learning.”

Since then, neural networks have made their way into many different fields and industries. 
For example, Google bought the technology rights to the University of Toronto’s image classifier 
and used it to automatically tag photos uploaded by users of their Google+ social media platform
[38]. Google also employs a different type of neural network known as a recurrent neural network 
for speech and text recognition [39]. Recurrent neural networks, as opposed to convolutional 
neural networks, have memory, making them useful for finding patterns in sequences of inputs. In 
general, convolutional neural networks have become popular for image processing and recurrent 
neural networks have become popular for processing text and speech.

These recent successes for neural networks have been made possible in part by the vast quantity 
of data that now exists to train them. But no such data exists for training robots to perform com­
plex tasks, such as playing ping-pong or flipping pancakes, so researchers have to rely on other 
methods to teach robots how to behave. A popular method of doing so is called reinforcement 
learning, where robots learn to perform a task based on trial-and-error, much like humans do, and 
good behaviors are reinforced by rewards. By learning how to maximize these rewards, the robots 
ideally learn how to best perform their tasks. Fueled by the surge in popularity of deep learning, 
researchers at Google DeepMind caused another groundbreaking advancement in the field with 
their paper Human-level control through deep reinforcement learning [40], where they combined 
deep learning with reinforcement learning to train a neural network to play 49 Atari 2600 games 
based on just the pixels on the screen and the total score. Their neural network significantly out­
performed earlier reinforcement learning game playing algorithms and reached a level comparable 
to professional human players.

Considering these recent successes, we were curious if deep reinforcement learning could be 
used to teach a neural network to adaptively dither the LIDARs. Given the current state of the robot
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and the coverage of the point cloud, this adaptive scan dithering neural network would periodically 
determine panning parameters that increased unique point cloud spatial coverage while not causing 
an unacceptable decrease in the real-time capabilities of the system. In the end, the neural network 
was unable to adaptively dither the sensors in a meaningful way, but it is believed that these efforts 
provide useful insights into this problem.

5.2 Adaptive Scan Dithering Process Overview

To reduce the scope of the problem, efforts focused only on dithering the rotation speed of the 
left-to-right panning LIDAR. Only dithering the rotation speed of a single LIDAR, not the pair, 
and not dithering the rotation limits results in a significant decrease in the number of outputs the 
neural network is required to have. As seen previously, the left-to-right panning LIDAR gets a 
fairly dense scan of the floor surrounding the robot, much more so than the front panning LIDAR. 
It is easier to visualize the effect of dithering if the points lie on a planar surface, as it reduces the 
problem down from three dimensions to two. Since the floor is typically planar, the point clouds 
from the left-to-right sweeping LIDAR simplify the process of evaluating the dithering.

Figure 5.1 provides a basic overview of the process the adaptive dithering neural network goes 
through to determine which speed to pan the LIDAR at and to train itself on how to make these 
determinations, and this network was designed with guidance from [41]. This process happens 
iteratively, with each iteration being triggered by the end of a panning cycle. Starting on the 
left-hand side of the figure, the network receives as input the state of its environment, consisting 
of the average linear and rotational velocities of the robot during the current panning cycle, the 
panning speed during the current cycle, and the point cloud coverage metric computed using the 
cloud from the previous cycle combined with the cloud from the current cycle. The network has 
an output associated with each panning speed the LIDAR is allowed to take, where each output is 
a number known as the Q-score for that action. The Q-score is the network’s estimate of the sum 
total of all future rewards that will be gained by performing the associated action in the current 
state, assuming all subsequent actions are ideal. Thus, the action with the highest Q-score is what 
the network thinks is the best course of action given the input. Allowable speeds range from 2.5% 
of full speed (2.85 RPM) to 25% of full speed (28.5 rpm) in 2.5% increments, giving the network 
fine control over the speed while preventing the LIDAR from panning too fast or too slow. The 
goal of the network is to learn an optimal LIDAR dithering policy such that, given the current state 
of the environment, it can predict which speed to pan the LIDAR at to balance between panning 
speed and coverage.
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Figure 5.1: Adaptive Scan Dithering Process Loop

With these probabilities in hand, the network then decides whether to choose a random action 
(referred to as exploration), or to choose the action with the highest associated probability (referred 
to as exploitation). The rate at which the network explores vs. exploits is controlled by the hyper­
parameters e, edecay, and em in , where hyperparameters are parameters set before training which 
both describe the network and control the learning process. e is the probability of performing a 
random action, and always starts at one. After each iteration, e is set equal to max(e * ed ecay, emin). 
This ensures that the network explores heavily in the beginning to discover which actions work 
well for a given situation, but that as time goes on it is more likely to prefer the good actions it has 
already discovered. However, setting a minimum value for e such that random actions still have a 
reasonable chance of occurring means the network will always be searching for better solutions.

Once the network has chosen which action to take, it performs that action and waits for the 
next panning cycle to complete. When this occurs, it is ready to evaluate the result of its action. 
It calculates an immediate reward for the action with the new point cloud metric and the speed at 
which it panned the LIDAR. This iteration is then stored as a sample in memory, consisting of the 
old state of the environment, the action taken, the reward, and the resulting new state. The cycle 
then begins anew with the new state being fed into the neural network. After enough samples have 
been collected, training the neural network begins. At the end of each cycle, a batch of samples is 
randomly selected from the memory. Using a batch of samples makes the training go more quickly, 
and using random samples instead of the most recent ones helps prevent network biasing caused 
by the fact that consecutive samples are likely to be highly correlated. The technique of training 
with random samples like this was developed by DeepMind and is referred to as experience replay.

Now, the actual training utilizes another optimization developed by DeepMind, which improves 
training convergence by using a target network in addition to the regular network. Both networks
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have identical structure, but where the regular network predicts what speed to pan the LIDAR at, 
the target network predicts what panning speed the network should predict. For each sample in 
the batch, the target network predicts which action to take given the old state. The target model 
then determines the overall reward for the action, by first predicting the maximum Q-score of the 
new state, which represents the total expected future rewards, then by discounting this reward by 
the hyperparameter 7 and adding it to the immediate reward gained from the action, such that 
rtotal = rim m ediate  +  Y * max(Q n e w ). This is referred to as the Bellman Equation in literature, and 
the discount is applied to future rewards to account for non-determinism in the environment; the 
more random the environment is, the more future rewards should be discounted.

Finally, the old state and the action/reward predicted by the target network are used to train 
the regular network. Stochastic gradient descent is used to optimize the weights of the network, 
and how much the weights are optimized for each batch is controlled by the learning rate hyper­
parameter r . A lower value of r is preferred, because too high a value can cause the optimizer to 
overshoot, which can prevent the network from converging. After the regular network has been 
trained with the batch of samples, the system checks how many cycles it has been since the last 
time the target model was updated, and if it has been long enough the weights of the regular net­
work are copied over to the target network. The number of iterations between updates is controlled 
by the hyperparameter t . Using the target network and only periodically updating it helps prevent 
divergence and oscillations in the dithering policy.

5.3 Coverage Metrics

By far the hardest part of working on the adaptive scan dithering was coming up with a satisfac­
tory metric for determining the 3D spatial coverage of the point cloud, and unfortunately one was 
never discovered that was quite good enough. The requirements of the metric were that it would 
classify the coverage in a way that was robust to changes in the environment and encouraged the 
network to tend towards keeping the points spread about. Since the point of dithering is to spread 
out points that would be otherwise clumped together, the first metric tested utilized the standard 
deviation in the Euclidean distance between points in the cloud.

The input to the algorithm is the last two panning cycles worth of point clouds, combined 
into a single cloud, so that the LIDAR has had the chance to scan the same region twice and can 
therefore determine if the dithering was effective or not. With the point cloud taken as a whole, it 
is virtually guaranteed that points will not be evenly spread throughout, since the sensors will hit 
obstacles and regions with their own distinct surfaces and edges, and at different distances. For 
example, one can see in Figure 4.15 how the snowbank and the ground have distinctly different 
point distribution patterns, and the standard deviation would be thrown off if the empty space 
between the two distinct features was included. The solution to this is to first split the point cloud
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up into unique regions and features using the Euclidean Cluster Extractor from the Point Cloud 
Library [42]. Point patterns for clusters are more consistent than the point pattern of the whole 
cloud, and getting rid of large empty distances improves the accuracy of the standard deviation 
computations.

For each point in each cluster, the standard deviation between that point and all its nearest 
neighbors (specified either by a certain number of nearest neighbors or nearest neighbors a certain 
distance away) is calculated. These are then used to determine the average standard deviation in 
Euclidean distance for a point and its nearest neighbors for the entire cluster. The idea here is 
that the lower the average standard deviation is, the more ideally the points are spread out, so 
the dithering AI works to minimize this value. However, in testing any useful information in this 
metric seemed to get drowned out, with it hardly changing, regardless of what the speed of the 
LIDAR was or if any form of dithering was active or not. This is believed to be the result of the 
averaging, and the fact that the point resolution along the laser’s center of rotation is significantly 
higher than the resolution about the servo’s center of rotation.

The second metric developed and tested is significantly more involved. Essentially, starting 
with the point clouds from the previous and current panning cycles as before, it identifies the largest 
planar region that has been scanned, constructs a coverage map over that region, then computes 
the ratio of the scanned area to the total area of the region. Step by step:

1. Start with the point clouds from the previous panning cycle and the current panning cycle, 
combining them into one accumulated cloud.

2. From that cloud, extract the largest planar component, which for the left-to-right panning 
LIDAR is most often the floor. For aforementioned reasons, it is easiest to determine the 
need for dithering by examining planar surfaces.

3. Filter out statistical outliers so they cannot throw off the calculation of the region’s size in 
upcoming steps.

4. Compute the convex hull of the planar cloud to get a bounding polygon around the cloud.

5. Draw a bounding rectangle around the bounding polygon, and use it discretize the region 
into a grid with a set resolution.

6. Iterate through the grid. Count the number of cells occupied by one or more points, then 
count the number of cells that are empty and also within the convex hull. Add the two to get 
the total number of cells within the hull.
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7. Compute the coverage metric as the number of occupied cells divided by the number of 
cells within the hull. This metric ranges from 0 to 1, with 0 representing no coverage and 1 
representing full coverage.

8. Repeat this process after the next panning cycle is completed.

The resulting coverage map for one iteration, with a grid resolution of 2.5 cm, is shown in 
Figure 5.2, where the occupied cells are colored black, the empty cells within the hull are dark 
gray, the cells outside the hull are light gray, and the bounding polygon for the region is outlined 
in green. This metric has promise, being much more sensitive to changes in panning speed than 
the previous one, and was used the most when attempting to train the dithering AI. However, in 
its current state it proved to be unstable. Figure 5.3 shows how this metric varies over time (in 
seconds) with the LIDAR panning at a fixed speed, with the robot stationary and the environment 
stationary. Under these conditions, the coverage metric should be relatively constant, but it in-fact 
can vary by more than 15%. The cause in this instability is due to variation in the size of the convex 
hull, caused by the furthest reaches of the planar cloud extending and contracting. Some of this 
extending and contracting was caused by the statistical outlier filtering, but without the filtering 
outlier points throw the region's shape off much more. Drawing a simple, static bounding box 
around the cloud would achieve more consistent results while the robot is stationary, but would fall 
apart if the robot moved around at all, which is why a more dynamic method of determining the 
boundary is necessary. Thus, this metric could work for training the neural network, but a more 
consistent and stable method of outlining the covered region is necessary.

Figure 5.2: Point Cloud Coverage Map for Computing Coverage Metric
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Figure 5.3: Plot of Cloud Coverage over Time with Fixed Viewpoint and Speed

5.4 Reward Function

The reward function provides the way for the network to determine the immediate reward 
associated with each action, given the current state of the environment. In real-world environments, 
the reward can't usually be expressed as simply as the total score at the end of a game, so careful 
design of the reward function is critical. As the goal of the neural network was to balance out point 
cloud spatial coverage and LIDAR panning speed, the reward was a function of these variables, and 
consisted of two distinct components: a reward for the raw coverage and a discount applied based 
on the speed of the LIDAR. The raw coverage reward was calculated as rcoverage = coverageL5, 
where coverage ranged from 0 to 1, with 0 being no coverage and 1 being full coverage. This 
curve, as seen in Figure 5.4 (a), places more weight on higher coverages, but not so much so that 
sacrificing a bit of coverage for a higher panning speed is unacceptable. The velocity discount is 
calculated as vdiscount = (vp a nn ing)0'5, where (Vp a nn ing) ranges from 0.025 to 0.25 as previously 
mentioned. This curve, as seen in Figure 5.4 (b), discourages the use of very slow panning speeds 
while making medium speeds more acceptable. The raw coverage reward and the velocity discount 
are combined to compute the total reward with:

rtotal 2 *  rcoverage *  Vdiscount 2 *  coVerage *  (vpa n n ing) . (5.1)

Note that the multiplication by two simply normalizes the reward to be between zero and one, 
just to make the equation a bit nicer. A much more natural interpretation of the reward function can 
be seen in Figure 5.5. One can see that higher rewards are given to the system for higher coverages 
and higher speeds, but that relatively high rewards can still be obtained at medium speeds if it is too
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Figure 5.4: Raw Coverage Reward and Velocity Discount Curves

hard or simply impossible for the network to get high speeds and high coverage, which is almost 
certainly the case.

LIDAR Panning Speed (Fraction of Full Speed)

Figure 5.5: Total Coverage Reward as a Function of Cloud Coverage

5.5 Network Configuration

With the intent of the network, the coverage metric, and the reward function established, the 
next step was to actually implement the network proper. This was done using Keras, a popular 
high level framework for developing neural network applications in Python [43]. Keras itself only
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implements an API to make it easier to use existing artificial intelligence software; the actual 
engine used for the learning was Google's TensorFlow [44]. Designing the network architecture 
started by defining the input and output layers. The input layer consisted of four neurons, one 
each for the average linear velocity of the robot, the average angular velocity of the robot, the 
current panning speed, and the coverage metric. The output layer consisted of ten neurons, one 
for each panning speed, ranging from 2.5% of full speed to 25% of full speed in 2.5% increments. 
Setting up the hidden layers was much more arbitrary, since there is no standard set of rules for 
how these should be setup. Ultimately two hidden layers were used, with 24 neurons in each. 
All of these layers were fully connected, meaning for each layer, each neuron is connected to all 
neurons in the next layer. The decision to use only fully connected layers for this network was 
made because they appear to form the core of most reinforcement learning networks out there, and 
the low dimensionality of the input did not seem to necessitate anything else. Each layer, except 
for the output layer, uses the rectified linear unit as its activation function. For inputs greater than 
zero, the output of this activation function is simply the input, and the output is zero otherwise. 
This is the simplest non-linear activation function, and is quite popular in deep learning as it can 
significantly speed up training time over using other non-linear activation functions. The output 
layer uses the linear activation function, meaning the output of the layer isn’t modified in any way. 
This is a common choice in deep reinforcement learning, since the outputs are Q-scores which 
could be negative if the network is penalized for performing "bad" actions.

The final step in designing the network was to choose values for its hyperparameters. Table
5.1 summarizes these choices. y , which controls the devaluation of future rewards, was set to 
0.5, as the real-world operating environment of the robot will be random except perhaps in very 
controlled experiments. The starting value of 1 for e is obvious as the network should always start 
by exploring. The values of 0.995, 0.01, and 0.01 for edecay, epsilonmin, and r, respectively, were 
chosen from a tutorial on deep-reinforcement learning [41]. The value of 15 for t  was chosen 
mostly arbitrarily, and corresponds to approximately a minute of robot operation per target model 
update.
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Table 5.1: Neural Network Hyperparameters

Parameter Value

Y 0.5

Y 1.0

£decay 0.995
£min 0.01
T 15

r 0.1

Devaluation of future rewards.
Initial value of epsilon. Controls the probability that 
the system explores instead of exploits.
Epsilon decay rate.
Minimum value of epsilon.
Number of iterations per target model update. 
Learning Rate. Controls how fast network weights 
are optimized.

5.6 Performance and Remarks

To verify the validity of the coverage metric and reward function, most of the testing involved 
trying to have the network learn a good dithering policy while the robot was completely stationary. 
This way, one would be able to tell if the AI could improve dithering at all, and if the configuration, 
coverage metric, and reward function were valid. To test the network setup, it was trained with 
just the coverage reward (without the velocity discount), and the network was able to learn that 
coverage could be maximized by panning the LIDAR as slowly as possible (since slower panning 
increases point density, covering more area). Unfortunately, the network was unable to learn a full 
optimal dithering policy. With the velocity discount as described above, the network still defaulted 
to scanning as slowly as possible. Even with testing out various velocity discounts, the network 
only converged to one fixed speed, certainly not the adaptive dithering we were aiming for.

Throughout this process, some very important lessons about deep learning were learned. For 
starters, it is a very complicated and time-consuming field to get into. It seems that one would need 
an entire team of researchers with years of experience in machine learning already, working non­
stop to produce anything remotely practical involving deep-reinforcement learning and robotics. 
Second, if one is wondering if they should use deep learning, the correct answer is probably no 
more often than not, since deep learning is so time consuming and for a lot of problems, more 
traditional algorithms can yield adequate performance. Third, one must have what they want their 
network to do mapped out to the finest detail, and inputs and reward functions must be excruci­
atingly shaped to promote that behavior. Even then, these inputs and rewards functions can end 
up promoting behaviors one does not expect, and the required redesign eats up even more time 
because one must train the network for a long time to even see if changes fix the issue.

Still, in theory we think some form of adaptive scan dithering would be useful, though deep- 
reinforcement learning is not necessarily the best way to go about it. Most 3D distance sensors 
rely on a high density of points to avoid missing useful information about the environment, but
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because this generates so much data, the point clouds more often than not have to be downsampled 
significantly before processing. An adaptive dithering AI would allow the sensors to scan with 
much greater efficiency, reducing computational load on control computers. Additionally, reduced 
scanning requirements for the sensors would allow them to be produced more cheaply, which 
would speed up the spread of intelligent robotic systems throughout our society. Thus, we think 
adaptive scan dithering is a topic that deserves further investigation.
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Chapter 6 Conclusions and Future Work
6.1 Conclusions

This thesis described the creation of a novel 3D LIDAR system which can be made at a cost 
of only about $350. Commercially available LIDARs at this pricing level only scan in 2D, with 
the next cheapest 3D LIDAR system, the Scanse Sweep 3D scanner, costing twice as much while 
scanning almost four times slower. Also, when compared to other low-cost 3D sensors like the 
Kinect v 1 and v2, the VS-LIDAR is much more capable of scanning sunlit areas, though it does 
need some sun shielding in the most extreme outdoor cases, and is much more capable of detect­
ing very nearby objects, which is important for safe navigation and obstacle avoidance. Further, 
LIDAR sensors work as well in the dark as they do in the light, giving the VS-LIDAR an edge 
over methods which get 3D data using traditional color cameras, which are sensitive to lighting 
changes. Additionally, data from the VS-LIDAR takes up much less bandwidth and computational 
resources than data from the Kinect v 1 and v2 and color camera depth measurement techniques, 
allowing lower cost computing hardware to be used and/or freeing up these resources for other 
tasks. All this, coupled with the VS-LIDAR’s wide 3D field-of-view, make it well suited for 3D 
obstacle detection and navigation in use-cases where obtaining complete real-time views of the 
environment isn’t a priority, as getting a full view takes on the order of seconds. An example 
use case would be an autonomous extraterrestrial mining robot, which would be operating in a 
relatively static environment.

Created in support of this system was a set of custom interface hardware, microcontroller 
firmware, and software packages that allow the VS-LIDAR system to be easily integrated on any 
robotic platform using the ROS development environment. The widespread popularity of ROS and 
the large number of tools and libraries incorporated with it, combined with the low cost of the 
VS-LIDAR, make this system highly accessible to robotics researchers and hobbyists alike. The 
ability for other ROS nodes or the user to change the panning parameters for each LIDAR on the 
fly allows the 3D scanning to be tailored for specific platforms or environments.

Additionally, a mobile testing platform for the VS-LIDAR and an example implementation of 
autonomous navigation using existing ROS packages were created. This implementation used an 
Extended Kalman Filter to fuse data from wheel odometry and an IMU into a more accurate esti­
mate of the robot’s pose, included a camera and an ArUco marker for correcting odometry errors 
and for identifying points of interest, and used the ROS navigation stack for obstacle avoidance 
and path planning. Experiments performed with this setup demonstrated the viability of using the 
VS-LIDAR for autonomous robotic systems.

Finally, a novel method of increasing the scanning efficiency of rotating 2D LIDARs using 
deep-reinforcement learning was investigated. It was noted that during consecutive panning cycles
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scan lines tended to line up with one another while the robot was stationary, and that when the 
robot was moving optimal scanning patterns are not obvious as the robot’s perspective of obstacles 
changes. The complexity and variety of 3D environments exacerbates this problem. Adaptive scan 
dithering was proposed as a solution to this problem, whereby a deep-reinforcement learning neural 
network is used to learn optimal dithering patterns which balance spatial coverage with panning 
speed, given the current panning speeds, the robot’s motion, and a coverage metric which compares 
point clouds from consecutive panning cycles to evaluate how well described the 3D space is. No 
such existing metric was found, so several were developed and tested out. Unfortunately, the neural 
network was unable to produce significant results; however, this research highlighted a new area 
for investigation.

To summarize:

• Designed a 3D LIDAR system that can be constructed for $350, four times faster and half 
the cost of the next cheapest available 3D LIDAR system.

• Created custom hardware, firmware, and software packages allowing the system to be plug- 
and-play with ROS, making the system accessible to researchers and hobbyists alike.

• Performed experiments demonstrating the system to have better performance at close range 
and in sunlit environments than other low-cost 3D sensors, though sun-shielding optics for 
the LIDARs need to be designed to protect them from direct sunlight.

• Demonstrated the advantages of a specific two LIDAR configuration over just using one 
LIDAR.

-  One LIDAR scans with a wide view in front of the robot quickly to detect near and far 
obstacles alike and to deal with dynamic obstacles.

-  One LIDAR scans to the sides of the robot in great detail, providing a better view 
of obstacles immediately surrounding the robot, allowing it to detect small obstacles 
potentially missed by the other LIDAR and allowing for quicker planning of paths 
involving rotations.

• Created an example implementation of autonomous navigation by combining existing ROS 
packages, demonstrating the VS-LIDAR system being used for 3D obstacle avoidance.

• Investigated a novel method of increasing the scanning efficiency of rotating 2D LIDARs 
termed "adaptive scan dithering,” identifying it as a new area for future research.
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6.2 Future Work

Though this thesis performed much of the required legwork in developing and testing a low- 
cost 3D LIDAR system, there is still further work to do. First, this system was designed with 
NASA’s Robotic Mining Competition specifically in mind, with the work on navigation also serv­
ing as preparation for the VS-LIDAR’s use in autonomous mining. Thus, work that will occur 
immediately in the future is transitioning the VS-LIDAR from a laboratory setting to a more natu­
ral setting with 3D obstacles like rocks and craters. This will require smarter obstacle detection to 
be performed than simply removing the ground plane, and that the issues with ROS’ 3D obstacle 
maps be solved. Doing these things will demonstrate with greater efficacy the practicality of using 
the VS-LIDAR for mission-oriented ground robots.

Also, a great opportunity for future work lies in adaptive scan dithering. Developing a method 
to intelligently scan an environment would be a great boon for robotics, as it would allow sensors 
to collect less data without a marked decrease in performance. This would allow sensors to be 
made more cheaply and make it easier to use their data, allowing for their incorporation on a 
wider assortment of autonomous robots, thus speeding up the proliferation of intelligent systems 
throughout our society. Future work would have to determine whether deep learning is indeed the 
way to go, or if their is perhaps some different method that would work better.

6.3 Lessons Learned

The execution of this thesis was a great learning experience regarding the creation of robotic 
systems. It covered every facet, from the design of mechanical and electrical components, to 
creating low-level device controllers, to working with higher-level robot control algorithms. It 
also served as a great crash course in the exploding field of deep learning, and illustrated the great 
amount of time and effort that goes into making these intelligent systems. Finally, it highlighted the 
problems that engineers face every day, such as dealing with random, mysterious bugs, valuable 
experience that is certain to make one more careful and competent when designing systems in the 
future.
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