10,358 research outputs found

    Lucas' theorem: its generalizations, extensions and applications (1878--2014)

    Full text link
    In 1878 \'E. Lucas proved a remarkable result which provides a simple way to compute the binomial coefficient (nm){n\choose m} modulo a prime pp in terms of the binomial coefficients of the base-pp digits of nn and mm: {\it If pp is a prime, n=n0+n1p++nspsn=n_0+n_1p+\cdots +n_sp^s and m=m0+m1p++mspsm=m_0+m_1p+\cdots +m_sp^s are the pp-adic expansions of nonnegative integers nn and mm, then \begin{equation*} {n\choose m}\equiv \prod_{i=0}^{s}{n_i\choose m_i}\pmod{p}. \end{equation*}} The above congruence, the so-called {\it Lucas' theorem} (or {\it Theorem of Lucas}), plays an important role in Number Theory and Combinatorics. In this article, consisting of six sections, we provide a historical survey of Lucas type congruences, generalizations of Lucas' theorem modulo prime powers, Lucas like theorems for some generalized binomial coefficients, and some their applications. In Section 1 we present the fundamental congruences modulo a prime including the famous Lucas' theorem. In Section 2 we mention several known proofs and some consequences of Lucas' theorem. In Section 3 we present a number of extensions and variations of Lucas' theorem modulo prime powers. In Section 4 we consider the notions of the Lucas property and the double Lucas property, where we also present numerous integer sequences satisfying one of these properties or a certain Lucas type congruence. In Section 5 we collect several known Lucas type congruences for some generalized binomial coefficients. In particular, this concerns the Fibonomial coefficients, the Lucas uu-nomial coefficients, the Gaussian qq-nomial coefficients and their generalizations. Finally, some applications of Lucas' theorem in Number Theory and Combinatorics are given in Section 6.Comment: 51 pages; survey article on Lucas type congruences closely related to Lucas' theore

    The congruence of Wolstenholme and generalized binomial coefficients related to Lucas sequences

    Full text link
    Using generalized binomial coefficients with respect to fundamental Lucas sequences we establish congruences that generalize the classical congruence of Wolstenholme and other related stronger congruences.Comment: 23 page

    Perfect powers in products of terms of elliptic divisibility sequences

    Full text link
    Diophantine problems involving recurrence sequences have a long history and is an actively studied topic within number theory. In this paper, we connect to the field by considering the equation \begin{align*} B_mB_{m+d}\dots B_{m+(k-1)d}=y^\ell \end{align*} in positive integers m,d,k,ym,d,k,y with gcd(m,d)=1\gcd(m,d)=1 and k2k\geq 2, where 2\ell\geq 2 is a fixed integer and B=(Bn)n=1B=(B_n)_{n=1}^\infty is an elliptic divisibility sequence, an important class of non-linear recurrences. We prove that the above equation admits only finitely many solutions. In fact, we present an algorithm to find all possible solutions, provided that the set of \ell-th powers in BB is given. (Note that this set is known to be finite.) We illustrate our method by an example.Comment: To appear in Bulletin of Australian Math Societ

    On Convolved Generalized Fibonacci and Lucas Polynomials

    Full text link
    We define the convolved h(x)-Fibonacci polynomials as an extension of the classical convolved Fibonacci numbers. Then we give some combinatorial formulas involving the h(x)-Fibonacci and h(x)-Lucas polynomials. Moreover we obtain the convolved h(x)-Fibonacci polynomials form a family of Hessenberg matrices

    Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012)

    Full text link
    In 1862 Wolstenholme proved that for any prime p5p\ge 5 the numerator of the fraction 1+12+13+...+1p1 1+\frac 12 +\frac 13+...+\frac{1}{p-1} written in reduced form is divisible by p2p^2, (2)(2) and the numerator of the fraction 1+122+132+...+1(p1)2 1+\frac{1}{2^2} +\frac{1}{3^2}+...+\frac{1}{(p-1)^2} written in reduced form is divisible by pp. The first of the above congruences, the so called {\it Wolstenholme's theorem}, is a fundamental congruence in combinatorial number theory. In this article, consisting of 11 sections, we provide a historical survey of Wolstenholme's type congruences and related problems. Namely, we present and compare several generalizations and extensions of Wolstenholme's theorem obtained in the last hundred and fifty years. In particular, we present more than 70 variations and generalizations of this theorem including congruences for Wolstenholme primes. These congruences are discussed here by 33 remarks. The Bibliography of this article contains 106 references consisting of 13 textbooks and monographs, 89 papers, 3 problems and Sloane's On-Line Enc. of Integer Sequences. In this article, some results of these references are cited as generalizations of certain Wolstenholme's type congruences, but without the expositions of related congruences. The total number of citations given here is 189.Comment: 31 pages. We provide a historical survey of Wolstenholme's type congruences (1862-2012) including more than 70 related results and 106 references. This is in fact version 2 of the paper extended with congruences (12) and (13
    corecore