2,836 research outputs found

    Intersecting families of discrete structures are typically trivial

    Full text link
    The study of intersecting structures is central to extremal combinatorics. A family of permutations F⊂Sn\mathcal{F} \subset S_n is \emph{tt-intersecting} if any two permutations in F\mathcal{F} agree on some tt indices, and is \emph{trivial} if all permutations in F\mathcal{F} agree on the same tt indices. A kk-uniform hypergraph is \emph{tt-intersecting} if any two of its edges have tt vertices in common, and \emph{trivial} if all its edges share the same tt vertices. The fundamental problem is to determine how large an intersecting family can be. Ellis, Friedgut and Pilpel proved that for nn sufficiently large with respect to tt, the largest tt-intersecting families in SnS_n are the trivial ones. The classic Erd\H{o}s--Ko--Rado theorem shows that the largest tt-intersecting kk-uniform hypergraphs are also trivial when nn is large. We determine the \emph{typical} structure of tt-intersecting families, extending these results to show that almost all intersecting families are trivial. We also obtain sparse analogues of these extremal results, showing that they hold in random settings. Our proofs use the Bollob\'as set-pairs inequality to bound the number of maximal intersecting families, which can then be combined with known stability theorems. We also obtain similar results for vector spaces.Comment: 19 pages. Update 1: better citation of the Gauy--H\`an--Oliveira result. Update 2: corrected statement of the unpublished Hamm--Kahn result, and slightly modified notation in Theorem 1.6 Update 3: new title, updated citations, and some minor correction

    Minimum saturated families of sets

    Get PDF
    We call a family F\mathcal{F} of subsets of [n][n] ss-saturated if it contains no ss pairwise disjoint sets, and moreover no set can be added to F\mathcal{F} while preserving this property (here [n]={1,…,n}[n] = \{1,\ldots,n\}). More than 40 years ago, Erd\H{o}s and Kleitman conjectured that an ss-saturated family of subsets of [n][n] has size at least (1−2−(s−1))2n(1 - 2^{-(s-1)})2^n. It is easy to show that every ss-saturated family has size at least 12⋅2n\frac{1}{2}\cdot 2^n, but, as was mentioned by Frankl and Tokushige, even obtaining a slightly better bound of (1/2+ε)2n(1/2 + \varepsilon)2^n, for some fixed ε>0\varepsilon > 0, seems difficult. In this note, we prove such a result, showing that every ss-saturated family of subsets of [n][n] has size at least (1−1/s)2n(1 - 1/s)2^n. This lower bound is a consequence of a multipartite version of the problem, in which we seek a lower bound on ∣F1∣+…+∣Fs∣|\mathcal{F}_1| + \ldots + |\mathcal{F}_s| where F1,…,Fs\mathcal{F}_1, \ldots, \mathcal{F}_s are families of subsets of [n][n], such that there are no ss pairwise disjoint sets, one from each family Fi\mathcal{F}_i, and furthermore no set can be added to any of the families while preserving this property. We show that ∣F1∣+…+∣Fs∣≥(s−1)⋅2n|\mathcal{F}_1| + \ldots + |\mathcal{F}_s| \ge (s-1)\cdot 2^n, which is tight e.g.\ by taking F1\mathcal{F}_1 to be empty, and letting the remaining families be the families of all subsets of [n][n].Comment: 8 page
    • …
    corecore