5,389 research outputs found

    Verifying Time Complexity of Deterministic Turing Machines

    Full text link
    We show that, for all reasonable functions T(n)=o(nlogn)T(n)=o(n\log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T(n)T(n). This is a tight bound on the order of growth for the function TT because we prove that, for T(n)(n+1)T(n)\geq(n+1) and T(n)=Ω(nlogn)T(n)=\Omega(n\log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T(n)T(n). We give results also for the case of multi-tape Turing machines. We show that we can verify whether a given multi-tape Turing machine runs in time at most T(n)T(n) iff T(n0)<(n0+1)T(n_0)< (n_0+1) for some n0Nn_0\in\mathbb{N}. We prove a very general undecidability result stating that, for any class of functions F\mathcal{F} that contains arbitrary large constants, we cannot verify whether a given Turing machine runs in time T(n)T(n) for some TFT\in\mathcal{F}. In particular, we cannot verify whether a Turing machine runs in constant, polynomial or exponential time.Comment: 18 pages, 1 figur

    Thermodynamics of stochastic Turing machines

    Get PDF
    In analogy to Brownian computers we explicitly show how to construct stochastic models, which mimic the behaviour of a general purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially, in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps.Comment: 13 pages incl. appendix, 3 figures and 1 table, slightly changed version as published in PR

    Quantifying Resource Use in Computations

    Get PDF
    It is currently not possible to quantify the resources needed to perform a computation. As a consequence, it is not possible to reliably evaluate the hardware resources needed for the application of algorithms or the running of programs. This is apparent in both computer science, for instance, in cryptanalysis, and in neuroscience, for instance, comparative neuro-anatomy. A System versus Environment game formalism is proposed based on Computability Logic that allows to define a computational work function that describes the theoretical and physical resources needed to perform any purely algorithmic computation. Within this formalism, the cost of a computation is defined as the sum of information storage over the steps of the computation. The size of the computational device, eg, the action table of a Universal Turing Machine, the number of transistors in silicon, or the number and complexity of synapses in a neural net, is explicitly included in the computational cost. The proposed cost function leads in a natural way to known computational trade-offs and can be used to estimate the computational capacity of real silicon hardware and neural nets. The theory is applied to a historical case of 56 bit DES key recovery, as an example of application to cryptanalysis. Furthermore, the relative computational capacities of human brain neurons and the C. elegans nervous system are estimated as an example of application to neural nets.Comment: 26 pages, no figure
    corecore