2,638 research outputs found

    Retrieving with good sense

    Get PDF
    Although always present in text, word sense ambiguity only recently became regarded as a problem to information retrieval which was potentially solvable. The growth of interest in word senses resulted from new directions taken in disambiguation research. This paper first outlines this research and surveys the resulting efforts in information retrieval. Although the majority of attempts to improve retrieval effectiveness were unsuccessful, much was learnt from the research. Most notably a notion of under what circumstance disambiguation may prove of use to retrieval

    Automatic Query Image Disambiguation for Content-Based Image Retrieval

    Full text link
    Query images presented to content-based image retrieval systems often have various different interpretations, making it difficult to identify the search objective pursued by the user. We propose a technique for overcoming this ambiguity, while keeping the amount of required user interaction at a minimum. To achieve this, the neighborhood of the query image is divided into coherent clusters from which the user may choose the relevant ones. A novel feedback integration technique is then employed to re-rank the entire database with regard to both the user feedback and the original query. We evaluate our approach on the publicly available MIRFLICKR-25K dataset, where it leads to a relative improvement of average precision by 23% over the baseline retrieval, which does not distinguish between different image senses.Comment: VISAPP 2018 paper, 8 pages, 5 figures. Source code: https://github.com/cvjena/ai

    On the Impact of Entity Linking in Microblog Real-Time Filtering

    Full text link
    Microblogging is a model of content sharing in which the temporal locality of posts with respect to important events, either of foreseeable or unforeseeable nature, makes applica- tions of real-time filtering of great practical interest. We propose the use of Entity Linking (EL) in order to improve the retrieval effectiveness, by enriching the representation of microblog posts and filtering queries. EL is the process of recognizing in an unstructured text the mention of relevant entities described in a knowledge base. EL of short pieces of text is a difficult task, but it is also a scenario in which the information EL adds to the text can have a substantial impact on the retrieval process. We implement a start-of-the-art filtering method, based on the best systems from the TREC Microblog track realtime adhoc retrieval and filtering tasks , and extend it with a Wikipedia-based EL method. Results show that the use of EL significantly improves over non-EL based versions of the filtering methods.Comment: 6 pages, 1 figure, 1 table. SAC 2015, Salamanca, Spain - April 13 - 17, 201

    Word sense disambiguation and information retrieval

    Get PDF
    It has often been thought that word sense ambiguity is a cause of poor performance in Information Retrieval (IR) systems. The belief is that if ambiguous words can be correctly disambiguated, IR performance will increase. However, recent research into the application of a word sense disambiguator to an IR system failed to show any performance increase. From these results it has become clear that more basic research is needed to investigate the relationship between sense ambiguity, disambiguation, and IR. Using a technique that introduces additional sense ambiguity into a collection, this paper presents research that goes beyond previous work in this field to reveal the influence that ambiguity and disambiguation have on a probabilistic IR system. We conclude that word sense ambiguity is only problematic to an IR system when it is retrieving from very short queries. In addition we argue that if a word sense disambiguator is to be of any use to an IR system, the disambiguator must be able to resolve word senses to a high degree of accuracy

    Word sense disambiguation and information retrieval

    Get PDF
    It has often been thought that word sense ambiguity is a cause of poor performance in Information Retrieval (IR) systems. The belief is that if ambiguous words can be correctly disambiguated, IR performance will increase. However, recent research into the application of a word sense disambiguator to an IR system failed to show any performance increase. From these results it has become clear that more basic research is needed to investigate the relationship between sense ambiguity, disambiguation, and IR. Using a technique that introduces additional sense ambiguity into a collection, this paper presents research that goes beyond previous work in this field to reveal the influence that ambiguity and disambiguation have on a probabilistic IR system. We conclude that word sense ambiguity is only problematic to an IR system when it is retrieving from very short queries. In addition we argue that if a word sense disambiguator is to be of any use to an IR system, the disambiguator must be able to resolve word senses to a high degree of accuracy

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    A New Combination Method Based on Adaptive Genetic Algorithm for Medical Image Retrieval

    Get PDF
    Medical image retrieval could be based on the text describing the image as the caption or the title. The use of text terms to retrieve images have several disadvantages such as term-disambiguation. Recent studies prove that representing text into semantic units (concepts) can improve the semantic representation of textual information. However, the use of conceptual representation has other problems as the miss or erroneous semantic relation between two concepts. Other studies show that combining textual and conceptual text representations leads to better accuracy. Popularly, a score for textual representation and a score for conceptual representation are computed and then a combination function is used to have one score. Although the existing of many combination methods of two scores, we propose in this paper a new combination method based on adaptive version of the genetic algorithm. Experiments are carried out on Medical Information Retrieval Task of the ImageCLEF 2009 and 2010. The results confirm that the combination of both textual and conceptual scores allows best accuracy. In addition, our approach outperforms the other combination methods

    Multi Domain Semantic Information Retrieval Based on Topic Model

    Get PDF
    Over the last decades, there have been remarkable shifts in the area of Information Retrieval (IR) as huge amount of information is increasingly accumulated on the Web. The gigantic information explosion increases the need for discovering new tools that retrieve meaningful knowledge from various complex information sources. Thus, techniques primarily used to search and extract important information from numerous database sources have been a key challenge in current IR systems. Topic modeling is one of the most recent techniquesthat discover hidden thematic structures from large data collections without human supervision. Several topic models have been proposed in various fields of study and have been utilized extensively for many applications. Latent Dirichlet Allocation (LDA) is the most well-known topic model that generates topics from large corpus of resources, such as text, images, and audio.It has been widely used in many areas in information retrieval and data mining, providing efficient way of identifying latent topics among document collections. However, LDA has a drawback that topic cohesion within a concept is attenuated when estimating infrequently occurring words. Moreover, LDAseems not to consider the meaning of words, but rather to infer hidden topics based on a statisticalapproach. However, LDA can cause either reduction in the quality of topic words or increase in loose relations between topics. In order to solve the previous problems, we propose a domain specific topic model that combines domain concepts with LDA. Two domain specific algorithms are suggested for solving the difficulties associated with LDA. The main strength of our proposed model comes from the fact that it narrows semantic concepts from broad domain knowledge to a specific one which solves the unknown domain problem. Our proposed model is extensively tested on various applications, query expansion, classification, and summarization, to demonstrate the effectiveness of the model. Experimental results show that the proposed model significantly increasesthe performance of applications
    • …
    corecore