10 research outputs found

    Generalized Evidence Theory

    Full text link
    Conflict management is still an open issue in the application of Dempster Shafer evidence theory. A lot of works have been presented to address this issue. In this paper, a new theory, called as generalized evidence theory (GET), is proposed. Compared with existing methods, GET assumes that the general situation is in open world due to the uncertainty and incomplete knowledge. The conflicting evidence is handled under the framework of GET. It is shown that the new theory can explain and deal with the conflicting evidence in a more reasonable way.Comment: 39 pages, 5 figure

    Distances in evidence theory: Comprehensive survey and generalizations

    Get PDF
    AbstractThe purpose of the present work is to survey the dissimilarity measures defined so far in the mathematical framework of evidence theory, and to propose a classification of these measures based on their formal properties. This research is motivated by the fact that while dissimilarity measures have been widely studied and surveyed in the fields of probability theory and fuzzy set theory, no comprehensive survey is yet available for evidence theory. The main results presented herein include a synthesis of the properties of the measures defined so far in the scientific literature; the generalizations proposed naturally lead to additions to the body of the previously known measures, leading to the definition of numerous new measures. Building on this analysis, we have highlighted the fact that Dempster’s conflict cannot be considered as a genuine dissimilarity measure between two belief functions and have proposed an alternative based on a cosine function. Other original results include the justification of the use of two-dimensional indexes as (cosine; distance) couples and a general formulation for this class of new indexes. We base our exposition on a geometrical interpretation of evidence theory and show that most of the dissimilarity measures so far published are based on inner products, in some cases degenerated. Experimental results based on Monte Carlo simulations illustrate interesting relationships between existing measures

    Two new Bayesian approximations of belief functions based on convex geometry

    Get PDF
    International audienceIn this paper, we analyze from a geometric perspective the meaningful relations taking place between belief and probability functions in the framework of the geometric approach to the theory of evidence. Starting from the case of binary domains, we identify and study three major geometric entities relating a generic belief function (b.f.) to the set of probabilities P: 1) the dual line connecting belief and plausibility functions; 2) the orthogonal complement of P; and 3) the simplex of consistent probabilities. Each of them is in turn associated with a different probability measure that depends on the original b.f. We focus in particular on the geometry and properties of the orthogonal projection of a b.f. onto P and its intersection probability, provide their interpretations in terms of degrees of belief, and discuss their behavior with respect to affine combination

    Two New Bayesian Approximations of Belief Functions Based on Convex Geometry

    No full text

    Some contributions to decision making in complex information settings with imprecise probabilities and incomplete preferences

    Get PDF
    corecore