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The purpose of the present work is to survey the dissimilarity measures defined so far in

the mathematical framework of evidence theory, and to propose a classification of these

measures based on their formal properties. This research is motivated by the fact that while

dissimilarity measures have been widely studied and surveyed in the fields of probability

theory and fuzzy set theory, no comprehensive survey is yet available for evidence theory.

The main results presented herein include a synthesis of the properties of the measures

defined so far in the scientific literature; the generalizations proposed naturally lead to

additions to the body of the previously knownmeasures, leading to the definition of numer-

ous new measures. Building on this analysis, we have highlighted the fact that Dempster’s

conflict cannot be considered as a genuine dissimilarity measure between two belief func-

tions and have proposed an alternative based on a cosine function. Other original results

include the justification of the use of two-dimensional indexes as (cosine; distance) couples

and a general formulation for this class of new indexes. We base our exposition on a geo-

metrical interpretation of evidence theory and show thatmost of the dissimilaritymeasures

so far published are based on inner products, in some cases degenerated. Experimental re-

sults based onMonte Carlo simulations illustrate interesting relationships between existing

measures.

Crown Copyright © 2011 Published by Elsevier Inc. All rights reserved.

1. Introduction

This paper presents, together with a synthesis of their main properties, a survey of the main dissimilarity measures

defined so far using the mathematical framework of evidence theory. This work leads to the definition of a reduced set of

general formulations, allowing the authors to categorize existing dissimilarity measures and in addition, to define several

new measures. Numerous technical observations are made about the surveyed measures and Monte Carlo simulations are

used to illustrate important differences in practical behaviors. An analysis of these experimentally outlined differences is

made and parallels can be drawn with the previously obtained categorization based on theoretical properties.

It shall be noted thatwe use the term “distance” herein to designate the intuitive notion relative to a somewhat quantified

difference amonga set of objects, even though in the technical literature the term is oftenused todesignate an actualmeasure

having precise properties. We prefer here to use the technical terms of dissimilarity and similarity, although in the current

section the distinctionwill not be clear cut aswewill respect asmuch as possible the terminology used in theworks referred

to.

The vast body of literature on the evaluation of distances between probability distributions is of course a great source

of inspiration for the definition of dissimilarity measures in evidence theory. Among the reference papers also aimed at

studying dissimilarities in the broad sense, we can cite the works of Basseville [2] and a recent paper of Cha [11] who

proposes a classification of the main distances in probability theory as well as a comparison method for the distances.

< A preliminary version of this paper has been presented at WBF’10 [36].∗ Corresponding author.
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In fuzzy set theory, Bloch proposed a detailed survey of distances between fuzzy sets in [8] where fuzzy distances

are reviewed and classified with respect to the needs in image processing applications. In the framework of imprecise

probabilities, Abellán and Gómez [1] defined three measures for comparison of credal sets 1 : an inconsistency measure, an

inclusion index and an informative distance. In [10], de Campos et al. proposed a method for building distances between

fuzzy measures based on associated probability distributions. In possibility theory, Jenhani et al. defined in [34] a distance

between possibility distributions together with some required properties.

In recentyears,manyworksonmeasuring thedistancebetweenbelief functionshaveemerged. Fora long time,Demspter’s

conflict factor has been the onlyway to quantify the interaction between belief functions (see for example [54,23]). However,

this factor may not be appropriate to quantify the dissimilarity between two belief functions as the conflict between two

identical belief functions may not equal to 0, a result somewhat counterintuitive. Several approaches have been proposed

for the definition of distances in evidence theory. In [56,46], Perry and Stephanou extended the Kullback-Liebler divergence

for probability distributions, Blackman and Popoli [7] and Ristic and Smets [50] defined a distance based on Dempster’s

conflict factor. Other authors proposed geometrical (Euclidean) distances: Fixsen and Mahler [26] defined a classification

miss-distance, Jousselme et al. [35] proposed a geometric distance accounting for the similarity between focal sets, Cuzzolin

[14] defined an Euclidean measure between belief values and extended it to Lp Minkowski measures in [16], Wen proposed

to quantify the similarity as the cosine measure of the angle between two mass vectors [59].

In the technical literature, two main aims may be identified regarding the practical use of distances between belief

functions: (1) for algorithm evaluation or optimization, for example in classification algorithms [26,35,19], or in belief

functions approximation algorithms [57,3,14,20], or for combination ruleparameter estimation [21,48,61], (2) as adefinition

of agreement between sources of information, for example in clustering techniques [4,60,5,52], or as a basis for discounting

factors [43,29,12,31,38,45]. In algorithm evaluation or optimization, the distance is computed with respect to a reference

belief function Belr or to an entire reference space, as in works on approximation algorithms where distances are measured

with respect to the subspace of Bayesian or consonant belief functions ([13] for instance), whereas in the definition of

agreement between sources of information no such reference exists. Depending on the application, some formal properties

are requiredwhile some others are superfluous. Our position is that none of the distancemeasures can be said to be superior

to the others in the absolute and that the choice of such a measure should always be guided by practical considerations

relative to a specific application.

In Section 2, we review important basic notions of evidence theory, including notational conventions that will ease the

subsequent analytic exposition, together with an emphasis on the geometrical interpretation in Section 2.2. The properties

of similarity and dissimilaritymeasures are detailed in Section 2.3. A categorization of the distances is proposed in Section 3,

based on the definition a set of different inner-products between belief functions. It is shown that most of the existing mea-

sures can fit in this general formulation. We also mention other works of interest. In Section 4, we discuss some outcomes

of the present survey: Section 4.1 summarizes the existing measures and proposes new measures, Section 4.2 discusses

the metric and structural properties, the normalization factors are presented in Section 4.3, Bayesian belief functions are

discussed in 4.4, Section 4.5 hightlights two kinds of measures that are metric distances and angles, an alternative to Demp-

ster’s rule is proposed in Section 4.6, different encoding of belief functions are proposed in Section 4.7 and some comments

about extensions to unnormalized and fuzzy belief functions are provided in Section 4.8. An experimental comparison of

distance measures is proposed in Section 5 firstly based on a toy example (Section 5.1) and on a more semantic approach

using additive trees (Section 5.2). Section 6 concludes on future works that will be developed in upcoming publications.

2. Background

The background material presented in this section deals with the following four main points: (1) the geometrical inter-

pretation of belief functions, that will be used in this paper to ease the exposition, (2) definitions on similarity, dissimilarity

andmetric measures, (3) basic notions on inner products and distances, and (4) the structural properties of belief functions.

2.1. Basics on evidence theory

Let X be a frame of discernment containing N distinct objects xi, i = 1, . . . ,N. We denote by x an element of X . The

power set of X , denoted by 2X , is the set of the 2N subsets of X . A Basic Probability Assignment (BPA) m is a mapping from

2X to [0, 1] satisfying the two following conditions:∑
A⊆X

m(A) = 1 and m(∅) = 0 (1)

A subset A of X is called a focal element if m(A) > 0 and we denote by F the set of all the focal elements, i.e. F = {A ⊆
X|m(A) > 0}. Three one-to-onemappings can be defined fromm, namely the belief, plausibility and commonality respectively

for all A ⊆ X:

1 A credal set K is a closed and convex set of probability distributions. The credal set associated with a belief function Bel defined on a frame of discernment

X is K = {p|Bel(A) ≤ p(A),∀A ⊆ X}.
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Bel(A) = ∑
B⊆A

m(B), Pl(A) = ∑
B∩A �=∅

m(B), q(A) = ∑
A⊆B

m(B) (2)

The pignistic probability [55] is defined for all A of X by:

Bet P(A) = ∑
B⊆X

m(B)
|A ∩ B|

|B| (3)

where |A| is the cardinality of set A. In particular, if A is a singleton {x}, we have Bet P({x}) = ∑
x∈B

m(B)
|B| .

Let us introduce the following indexes between two subsets of X:

Inclusion index : Inc(A, B) = 1 if A ⊆ B and 0 otherwise (4)

Intersection index : Int(A, B) = 1 if A ∩ B �= ∅ and 0 otherwise (5)

Pignistic index : Bet(A, B) = |A ∩ B|
|B| (6)

The Inc index corresponds to QfrM in [53]. We note that Int is symmetric while Inc and Bet are not. The dual index of Int is

1 − Int which is such that 1 − Int(A, B) = 1 iff A ∩ B = ∅ and 0 otherwise. Introducing these indexes allows alternative

notations for Eqs. (2) and (3):

Bel(A) = ∑
B⊆X

m(B)Inc(B, A) (7)

Pl(A) = ∑
B⊆X

m(B)Int(A, B) (8)

q(A) = ∑
B⊆X

m(B)Inc(A, B) (9)

Bet P(A) = ∑
B⊆X

m(B)Bet(A, B) (10)

2.2. A geometrical interpretation of evidence theory

The geometrical interpretation of evidence theory can be traced back to the work of Ronald Mahler in 1996 [42], where

the author sets the bases with a random sets interpretation of belief functions. 2 This interpretation has also been used in

[35] to define a distance between two belief functions, and further developed by Cuzzolin in [14,15] for instance.

Let EX be the 2N-dimensional Cartesian space spanned by the set of vectors {eA, A ⊆ X}. Any vector v of EX can be then

written as v = ∑
A⊆X αAeA, where αA ∈ IR is the coordinate of v along the dimension eA.

A BPA is a vector 3 m of EX satisfying the properties (1), i.e.
∑

A⊆X αA = 1, α∅ = 0, with αA ≥ 0 together with

αA = m(A). A belief function Bel is then represented equivalently by a vector Bel = ∑
A⊆X Bel(A)eA, with its belief values

Bel(A) as coordinates of Bel. Equivalent representations hold for Pl and q.

Using a vector-matrix notation as proposed in [53] is natural and makes the exposition easier. Let us now denote by Inc,

Int and Bet as being the matrices whose elements are defined by Eqs. (4)–(6), and let Inc′ denote the transpose matrix of

Inc. We can then rewrite Eqs. (7)–(10) as the following products:

Bel = Inc′ · m, Pl = Int · m, q = Inc · m BetP = Bet · m (11)

For example, for N = 2 we have:

Inc =

⎛⎜⎜⎜⎝
1 0 1

0 1 1

0 0 1

⎞⎟⎟⎟⎠ , Int =

⎛⎜⎜⎜⎝
1 0 1

0 1 1

1 1 1

⎞⎟⎟⎟⎠ , Bet =

⎛⎜⎜⎜⎝
1 0 1

2

0 1 1
2

1 1 1

⎞⎟⎟⎟⎠ (12)

where the focal elements have been ordered as {x1, x2, (x1, x2)} in rows and in columns. Thematrix Inc is a upper triangular

matrix with positive values on the diagonal. The matrix Bet is of rank N (instead of 2N − 1 if it had be of full rank) because

Bet P(A) = ∑
x∈A Bet P({x}). It defines thus a projection over Ex , theN-dimensional subspace of EX spanned by the singleton

vectors ex , i.e. the space of probability distributions. We will denote in the following by Betx the rectangular matrix with N

rows and 2N − 1 columns. Then, BetP = Betx ·m is thus the pignistic Bayesian approximation (or pignistic transformation)

2 Note that the geometrical interpretation referred here should not be confoundedwith thework of Kendall andMathéron [37,44] on random sets, as the latter

work provides a geometrical setting for random sets in IRd and not to probability distributions explicitly.
3 As a convention, a vector v is a column vector, and its transpose v′ a row vector.
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Table 1

Axioms for metrics. The properties hold for all (y, z, t) ∈ S3.

Metric Semi-metric Quasi-metric Pseudo-metric Semi-pseudo-metric Pre-metric

(d1) Nonnegativity d(y, z) ≥ 0 × × × × × ×
(d2) Symmetry d(y, z) = d(z, y) × × × ×
(d3) Definiteness d(y, z) = 0 ⇔ y = z × × ×
(d3)’ Reflexivity d(y, y) = 0 × × × × × ×
(d3)” Separability d(y, z) = 0 ⇒ y = z × × ×
(d4) Triangle inequ. d(y, z) ≤ d(y, t) + d(t, z) × × ×

of Bel, and BetP is a vector of size N × 1. In general, we will denote byWx the N × 2N − 1 rectangular matrix corresponding

to the restriction of the squarematrixW to the N singletons (Betx, Incx, Intx, . . .). Note that Bet is denoted by BetPfrM and

Betx by betPfrM in [53].

2.3. Similarities and dissimilarities

In this paper, the term “distance” is used to denote a general and intuitive notion of distance quantifying howmuch two

objects are different. This intuitive notion encompasses all the other more formal terms used in the paper. In particular, we

distinguish formal notions defined by axiomatic properties of Table 1 such as (full) metric, 4 pseudometric, semimetric. All

other distances satisfying less axioms than a premetric will be called nonmetric.

Let y be an element of a given space S . In this paper, S will represent either EX , the space of belief functions in which case

y ≡ m, or 2X , the set of focal elements in which case y ≡ A.

A function d : S × S → IR is a (full) metric if and only if d satisfies the following properties for all (y, z, t) ∈ S3:

(d1) Nonnegativity: d(y, z) ≥ 0.

(d2) Symmetry: d(y, z) = d(z, y).
(d3) Definiteness: d(y, z) = 0 ⇔ y = z.

(d4) Triangle inequality: d(y, z) ≤ d(y, t) + d(z, t), ∀t.
Property (d3) can be split into (d3)’ and (d3)”, the properties of:

(d3)’ Reflexivity 5 : d(y, y) = 0.

(d3)” Separability: d(y, z) = 0 ⇒ y = z,

(d1) together with (d3) define positive definiteness.

If d satisfies only some subsets of the set of axioms above, then different degenerate forms of metrics are defined, as

summarized in Table 1.

The weakest kind of metric is a premetricwhich is only nonnegative (d1) and reflexive (d3)’. A quasimetric is all excepted

that it is not symmetric. A pseudometric is almost a (full) metric excepted that it does not satisfy the separability property

(d3)”, and consequently, the definiteness property (d3). The separability property guaranties that a null distance is obtained

only between an object and itself. If not satisfied, two distinct objects may have a null distance. A semimetric satisfies all the

propertiesexcepted the triangular inequality (d4).Anda (full)metric satisfiesall axioms from(d1) to (d4). Somecombinations

of the prefixes semi, pre, quasi, pseudomay be combined leading to other kinds of degenerate metrics. Of particular interest

in this paper, a semipseudometric is a distance satisfying all five axioms except (d4) (semi) and (d3)” (pseudo). A distance

which does not minimally satisfy the two axioms of nonnegativity and reflexivity will be called nonmetric.

A function s : S × S → IR is a similarity if and only if s satisfies the following properties for all (y, z) ∈ S2:

(s1) Symmetry6 : s(y, z) = s(z, y),
(s2) s(y, y) ≥ s(y, z), for all y �= z.

Furthermore if s satisfies:

(s3) Normality: s(y, y) = 1,

then, s is normed. A dissimilarity minimally satisfies the axioms (d1), (d2) and (d3)’. Several techniques exist that allow the

definition of dissimilarities from similarities (see [30]), like the simple relation d = 1 − s. For instance, the cosine measure

which is known to be a similaritymeasure can be transformed into a dissimilaritymeasure by defining cosd(θ) = 1−cos(θ).

4 Although being redundant, the term “full metric” will be sometimes used in this paper to distinguish it from a pseudometric.
5 The reflexivity axiom is also called identity axiom. Also, note that a weakest form of the reflexivity axiom can be defined as d(y, y) = α where α is a constant.
6 Note that in some cases, like in directional statements involving an object and a referent (e.g. , “A is like B”), the symmetry property may be considered too

strong for similarity measures [58].
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2.4. Inner products and distances

An inner product ⊗ over a linear space V is a mapping

⊗ : V × V −→ IR

(v1, v2) �−→ ⊗(v1, v2) = α

which must satisfy the 3 following axioms for all vectors v1, v2, v3 of V and all scalars a, b ∈ IR:

(ip1) Symmetry: ⊗(v1, v2) = ⊗(v2, v1),
(ip2) Linearity in the first argument: ⊗(av1 + bv2, v3) = a ⊗ (v1, v3) + b ⊗ (v2, v3),
(ip3) Positive-definiteness: ⊗(v, v) ≥ 0 with equality only for v = 0.

A linear space V endowed with an inner product ⊗ is called an inner product space. This is true for EX in particular.

A general representation for an inner product is:

⊗W (v1, v2) = v′
1Wv2 (13)

where W is a matrix of weights (weighting matrix) required to be symmetric and positive definite. 7 The angle between v1
and v2 is given by:

θ = arccos

( ⊗W (v1, v2)

‖v1‖W .‖v2‖W

)
(14)

where the norm of a vector v is defined as ‖v‖W = √⊗(v, v) and represents the length of v. The norm can be used to define

a distance function on EX by:

d(v1, v2) = ‖v1 − v2‖W =
√

(v1 − v2)′W(v1 − v2) (15)

An inner product is degenerate if it satisfies all the properties except the separability property, i.e. if ‖v‖W = 0 does not

imply v = 0. In this case,W is only positive semidefinite. The induced norm is then a pseudonorm and the induced distance,

a pseudometric (see Table 1).

If W is square, symmetric and positive definite, then W can be uniquely factorized as W = U′U, where U is upper

triangular with positive diagonal entries (Cholesky decomposition). Note that this result also holds wheneverW is positive

semidefinite. Then, we can write (13) and (15), respectively as:

⊗(v1, v2) = (Uv1)
′(Uv2) (16)

and

d(v1, v2) =
√

(U(v1 − v2))
′ U(v1 − v2) (17)

2.5. Structural property of belief functions

Besides the axioms introduced in the previous section, a distance between belief functions should satisfy other properties

very specific to the nature of belief functions. Although the development of such properties is out of the scope of the present

paper, we will however consider the following properties:

(sp1) Strong structural property (interaction between focal elements):

A distance measure d between two belief functions Bel1 and Bel2 is said to be strongly structural if its definition

accounts for the interaction between the focal elements of Bel1 and Bel2, i.e. if s(eA, eB), where s quantifies the

interaction between the basis vectors, plays a role in the definition of d.

(sp2) Weak structural property (cardinality of focal elements):

A distance measure d between two belief functions Bel1 and Bel2 is said to be weakly structural if its definition

accounts for the cardinality of the focal elements of Bel1 and Bel2, i.e. if |A| plays a role in the definition of d.

(sp3) Structural dissimilarity (interaction between sets of focal elements):

A distance measure d between two belief functions Bel1 and Bel2 is said to satisfy the structurally dissimilarity

property if its definition accounts for the interaction between the sets F1 and F2 of focal elements of Bel1 and

Bel2, i.e. if dfe(F1,F2), where dfe quantifies the interaction between the sets of focal elements.

7 A matrix is positive definite iff all its eigenvalues are strictly positive (λi > 0), and it is positive semidefinite iff its eigenvalues are positive (λi ≥ 0).
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Fig. 1. Historical contributions to the measurement of distance between two belief functions.

Indeed, compared to traditional spaces, the basis vectors eA, A ⊆ X , of the space EX of belief functions can be linked

through some similarity or dissimilarity measures, making this space in some sense “curved”. For instance, the basis vectors

eA and eB where A = {x1, x2, x3} and B = {x1, x2} are more similar than the basis vectors eA and eC where C = {x4, x5}.
This structural property is an interesting property to be satisfied by a distance measure between belief functions and will

be considered in the upcoming analysis as the axiomatic metric properties will be.

2.6. Notations

In the remaining of this paper, we will denote by d a dissimilarity measure, by s a similarity measure, by ⊗ an inner

product, and by cos a cosine measure. Moreover, a subscript W will be added to the previous ones to specify the weighting

matrix. A superscript s or dwill be added to ⊗ to specify ifW defines a similarity or dissimilarity respectively. A superscript

(p) will also be added to d to denote the Minskowski family, p ∈ {1, 2, . . . , ∞}.

3. Survey of the main distances in evidence theory and classification

Since the introduction of Dempster’s conflict measure [17], about 20 distance measures between belief functions have

been defined in the technical literature. Fig. 1 summarizes several contributions that will be reviewed in this paper.We hope

this survey is exhaustive and apologize for any forgotten contribution.

Most of the distance measures defined so far in the evidence theory framework are derived from inner products, either

directly (see Section 3.3), or through metrics. The main family of metrics considered is the Minkowski family (Section 3.2),

denoted as Lp, whosemost famous representative is the Euclideanmetric family L2 (see Section3.2.2). L1 metrics (Manhattan)

and L∞ metrics (Chebyshev norm, also called infinity, uniform or supremum norm) will be reviewed in Sections 3.2.1 and

3.2.3 respectively. The Fidelity family of distances will be described in Section 3.4 and information-based distances will be

presented in Section 3.5. This categorization leads naturally to generalizations that will be made explicit in the following,

and that will help us obtain the definition of more than 40 new measures of distances between belief functions in Section

4.1.

As an introduction to this section, we present two composite measures that cannot be formally classified into the metric

family even if some of their individual components could be to some extent.

3.1. Composite distances

The first work addressing specifically the problem of quantifying the distance between two belief functions is that of

Perry and Stephanou who have proposed in [46], based on [56], a measure of divergence between two belief functions to be

used by a classifier. The authors argue that an evaluation of distance should measure “the difference between the amount

of information available when they are considered separately and when they are combined”. They thus proposed what they

have called “an extension of the symmetric version of Kullback-Liebler divergence” 8 for probability distributions based on

the fact that the updating rule is Dempster’s combination rule rather than Bayes’ rule:

dPS(m1,m2) = |F1 ∪ F2|
(
1 − |F1 ∩ F2|

|F1 ∪ F2|
)

+ (m12 − m1)
′(m12 − m2) (18)

︸ ︷︷ ︸
dPS(1)

︸ ︷︷ ︸
dPS(2)

where Fi is the set of focal elements of mi and m12 is the BPA obtained by combining m1 and m2 with Dempster’s rule.

The resulting expression has two components: (1) a measure of structural dissimilarity (dissimilarity between sets of focal

elements),dPS(1) and(2)ameasureof informationchange relatively to theorthogonal sum,dPS(2). ThememberdPS(1) quantifies

8 The reader is referred to the original paper [56] for an argumentation of the authors in favour of this formulation.
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how close the two sets of focal elements are from each other: If Bel1 and Bel2 have the same focal elements (F1 = F2), then

dPS(1) = 0 meaning that Bel1 and Bel2 are structurally identical. Referring to the discussion in Section 4.5 about the angles

and distances, two belief functions with the same set of focal elements (dPS(1) = 0) are found to be collinear.

The underlying intuition in Perry and Stephanou’s divergence is that two aspectsmust be considered, namely the interac-

tion between focal elements (the so-called structural property in the remainder of the present article) and the difference in

mass values. The distance dPS can be analyzed component by component: the first component dPS(1) satisfies the structural

dissimilarity property (sp3) and the basic axioms (d1) and (d2). The second component dPS(2) satisfies the strong structural

property (sp1) due to the use of Dempster’s combination and the basic axiom (d2) but fails to satisfy the non-negativity

axiom (d1). The global distance dPS has thus at least four shortcomings: (1) the range of dPS(1) is much higher than that of

dPS(2), which puts a (too) large emphasis on the structural property (larger if |X| is high), (2) dPS is a nonmetric measure

as it does not satisfy the (d1), (d3)’ (dPS(2)(m,m) �= 0), (d3)” and (d4) axioms, (3) dPS(2) (thus dPS) is not defined if the

(Dempster’s) conflict between m1 and m2 is 1 (as ism12), (4) dPS is undefined for dPS(eA, eB) such that A ∩ B = ∅.

In [7], Blackman and Popoli defined what they called an “attribute distance” to be used in association algorithms:

dBP(m1,m2) = −2 log

[
1 − ⊗d

Int(m1,m2)

1 − maxi=1,2 ⊗d
Int(mi,mi)

]
+ (m1 + m2)

′gA − m′
1Gm2

︸ ︷︷ ︸
dBP(1)

︸ ︷︷ ︸
dBP(2)

(19)

where ⊗d
Int(m1,m2) is Dempster’s conflict introduced in (43), gA is a vector whose elements are

|A|−1

|X|−1
, and G = gAg

′
A is a

matrix whose elements are G(A, B) = (|A|−1)(|B|−1)

(|X|−1)2
, A, B ⊆ X , where m′.gA is the partial ignorance introduced in [56].

The first component of (19) (denoted by dBP(1) hereafter) has been called “attribute distance” by the authors while the

second member (denoted by dBP(2) hereafter) has been called “ignorance distance”. The quantity dBP(1) remains undefined

whenever⊗d
Int(m1,m2) = 1 (total conflict) and is equal to zero whenever⊗d

Int(m1,m2) = 0 (null conflict). However, a null

conflict (in Dempster’s sense) betweenm1 andm2 does not imply thatm1 = m2. The second term dBP(2) serves as a penalty

factor aiming at the discrimination between cases of perfect match and those depicting an ignorance situation. Summing

up these two components leads to a non positive measure, and thus dBP is a nonmetric distance (axiom (d1) is not satisfied).

In fact, (d2) the symmetry axiom is the only axiom satisfied by dBP .

Composite distances lead to deceiving results in terms of metric properties as they only satisfy the symmetry axiom

(d2). However, the individual components involved, i.e. dPS(1), dPS(2), dBP(1), dBP(2), are interesting since each highlights some

requirements in particular, a distance measure between belief functions should account in an aggregate manner for both

the structural properties (difference in the Fis) and the mass dissimilarity (difference in the mi(Aj)). Most of the distances

presented in the following aim at addressing these requirements. We have been inspired by [11] for the structure and

terminology used in the upcoming subsections.

3.2. Minkowski family

The Minkowski family of distances between two belief functions can be written under the following general form:

d
(p)
W (m1,m2) =

([
(Um1 − Um2)

p
2

]′ [
(Um1 − Um2)

p
2

]) 1
p

(20)

where U is the upper triangular matrix of the Cholesky decomposition of the matrixW, that isW = U′U, and p is an integer

higher than 1. If v′ = [v1 . . . vN], then vα for α ∈ IR is the vector whose components are vα
i . Typical cases of interest are

obtained with p = 1, p = 2 and p = ∞ leading to the Manhattan (or city-block), Euclidean and Chebyshev distances

respectively. Recently, Cuzzolin defined in [16] Lp measures between belief functions to address the problem of consistent

approximations of belief functions:

d
(p)
Inc (m1,m2) =

⎛⎝∑
A⊆X

|Bel1(A) − Bel2(A)|p
⎞⎠

1
p

(21)

This is just a special case of the general formulation (20) with U = Inc′.

3.2.1. Manhattan distances – L1
The general L1 measure for belief functions is obtained for p = 1 in (20):

d
(1)
W (m1,m2) =

[
(Um1 − Um2)

1
2

]′ [
(Um1 − Um2)

1
2

]
(22)
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We obtain for U = Inc′:
d
(1)
Inc (m1,m2) = ∑

A⊆X

|Bel1(A) − Bel2(A)| (23)

This distance of type L1 has been introduced by Klir and Harmanec in [40,32] and further used in [20] as an error measure

for belief function approximations. Note however that the original formulation of (23) in [40] did not use the absolute

value because the distance was defined for approximations of belief functions purposes and Bel2 was a necessity measure

consistentwith Bel1 thus such that Bel1(A) ≥ Bel2(A),∀A ⊆ X . We added the absolute value for the definition in the general

case. In [14], Cuzzolin identified d
(1)
Inc as inappropriate for the probabilistic approximation of a belief function as all Bayesian

belief functions consistent with a given one Bel0 have the same d
(1)
Inc distance from Bel0. In [20], Denœux introduced the

counterpart of (23) for plausibility functions, obtained by letting U = Int:

d
(1)
Int (m1,m2) = ∑

A⊆X

|Pl1(A) − Pl2(A)| (24)

This distancemeasurement has been used in [20,22,16] for belief functions approximations. Also, in [45] a restricted version

of (24) to singletons is used, thus with U = Intx:

d
(1)
Intx(m1,m2) = ∑

x∈X

|Pl1(x) − Pl2(x)| (25)

As already noticed in [20], the duality of the Bel and Pl measures, i.e. Pl(A) = 1 − Bel(A), makes the expressions (23) and

(24) equal while it is no longer true under the open world assumption (unnormalized belief functions). Also, this property

does not hold for (25) as d
(1)
Intx(m1,m2) �= d

(1)
Incx(m1,m2).

3.2.2. Euclidean distances – L2
When p = 2, (20) becomes:

d
(2)
W (m1,m2) =

√
(m1 − m2)′W(m1 − m2) (26)

whereW = U′U is a positive semidefinite matrix. Several L2 distances (hence several inner products) can then be obtained

by modifying the weighting matrix W.

The simplest inner product in EX is:

⊗s
I (m1,m2) = m′

1 I m2 (27)

where I is the identity matrix. The inner product ⊗s
I does not satisfy any structural property as it only accounts for the

mass distribution over the focal elements and not for the interaction between the focal elements themselves. Like its

inner product, the associated distance d
(2)
I suffers from the same drawback. For example, the BPAs m1({x1, x2, x3}) = 0.8,

m1({x2, x3}) = 0.2 and m2({x1, x2, x3, x4}) = 1 are very far from each other according to d
(2)
I , while intuitively they are

not. d
(2)
I has been introduced first in [46] and used for instance in [19] as an optimization criterion in the training of a neural

network, in [49] in a process of combination of pairwise classifiers or in [50] in an association algorithm.9 However, one

interesting property of this distance is that it is definite, and thus d
(2)
I (m1,m2) = 0 ⇔ m1 = m2. In fact d

(2)
I satisfies all

the axioms,(d1) to (d4), of a full metric.

In order to evaluate the performance of identification algorithms, Fixsen and Mahler proposed in [26] a “classification

miss-distance metric” called BPAM, for Bayesian Percent Attribute Miss based on the following inner product:

⊗s
P(m1,m2) = m′

1 P m2 (28)

where P is the matrix whose elements are:

P(A, B) = p(A ∩ B)

p(A)p(B)
, for A, B ∈ 2X\∅ (29)

with p being an a priori probability measure assumed to exist on X representing some background knowledge on the

hypotheses of X , such as class priors in a classification problem. The definition of (29) results in an extension of the “trivial

plausibility measure” ρ defined such that ρ(A) = 1 if A �= ∅ and ρ(∅) = 0 which defines “Dempster’s agreement” [26].

The resulting inner product is richer than ⊗s
I as it satisfies the strong structural property (sp1). For instance, P(A, B) = 0

if and only if A ∩ B = ∅, otherwise it is between 0 and 1. The corresponding distance, denoted as d
(2)
P , is thus more

appropriate than d
(2)
I to quantify the distance between belief functions. However, d

(2)
P is a pseudometric (the condition of

separability (d3)” is not respected) since P is only positive semi-definite. This means that one can obtain m1 �= m2 such

9 We assume that the authors of [50] referred to Eq. (27) instead of their expression (34) which is always equal to 1, as noticed in [27].
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that d
(2)
P (m1,m2) = 0. The definition of p is assumed to be known before hand and depends on the application at hand (for

instance, prior distribution over a set of classes). However, without any knowledge about p a uniform distribution can be

reasonably considered and we obtain P(A, B) = N|A∩B|
|A||B| .

In [35], with the aim of defining a “full” distance accounting for the interaction between the focal elements (satisfies the

strong structural property), we introduced an inner product based on the Jaccard index, itself a classical similarity measure

between sets:

⊗s
J (m1,m2) = m′

1Jac m2 (30)

where Jac is the matrix whose elements are Jaccard indexes:

J(A, B) = |A ∩ B|
|A ∪ B| , for A, B ∈ 2X\∅ (31)

The matrix Jac is positive definite and the corresponding distance d
(2)
J is a full metric. 10 Besides satisfying all the metric

axioms,(d1) to (d4), d
(2)
J also satisfies the strong structural property (sp1). This distance has been widely used in several

applications such as for instance in the estimation of discounting rates [28,43,18,31].

In [24], Diaz et al. proposed to extend d
(2)
J in two ways: by replacing J(A, B) by any similarity measure between sets

S(A, B) and by using one of 17 possible measures for the definition of the weighting matrix. For instance, a Dice index can

be used:

D(A, B) = 2|A ∩ B|
|A| + |B| , for A, B ∈ 2X\∅ (32)

The properties of the resulting distance d
(2)
S depend on the properties of the matrix S and the main remaining question is

whether S is positive definite or semi-definite. Without a formal analysis of the properties of D, we cannot know if d
(2)
D is or

not a full metric. However, we will see in Section 5.2 how these properties can be suspected from the membership of d
(2)
D to

a particular family of measurements.

The other extension proposed in [24] (the main purpose of their work) relies on the modification of S by a function F

so that the resulting similarity measure “rewards” small cardinalities while penalizing high cardinalities of focal sets. The F

function is piecewise: One piece for “reward” and one piece for “penalty”, and the connection is done through a ρ parameter.

The modification of inner products is then defined by:

⊗s
F(S)(m1,m2) = m′

1 F(S, R) m2 (33)

where R = |A∪B|
|X| , S is the matrix whose elements quantify the similarity between focal elements. As an example, let us

consider A = {x1, x2, x3, x4, x5}, B = {x1, x2, x3}, C = {x1, x2}, D = {x1}. Diaz et al. [24] argue that it is easier for A and B to

be similar (since they have high cardinalities) than it is for C and D, and thus the similarity should be corrected accordingly.

Hence, while we have J(A, B) = J(C,D), we have F(Jac, R)(A, B) < F(Jac, R)(C,D). All the distances based on (33) satisfy

the strong structural property (sp1) as well as all the metric axioms excepted the separability axiom (d3)” depending on the

definiteness of S.

With the aim of computing the orthogonal projection of a belief function onto the probability simplex, Cuzzolin proposed

in [13] the standard Euclidean distance between belief functions. Although not defined explicitly, the underlying inner

product is:

⊗s
Inc(m1,m2) = m′

1 Inc Inc′ m2 (34)

where Inc has been introduced in Section 2.2, and the elements of the matrix Inc Inc′ are:
Inc2(A, B) = |{A ⊆ C} ∩ {B ⊆ C}|, ∀C ⊆ X (35)

where {·} denotes a set of subsets of X . In other words, Inc2 is the number of subsets C of X which contain both A and B. The

weighting matrix Inc Inc′ is also a way to quantify the interaction between focal elements rather based on their inclusion

than on their similarity. Thus, the resulting distance d
(2)
Inc satisfies the strong structural property (sp1). Moreover Inc Inc′ is

positive definite and the resulting distance, d
(2)
Inc , is thus a full metric. As already noticed, replacing the belief function by the

plausibility, i.e. replacing Inc by Int leads to the same measure.

Another way to compare belief functions is through their betting ability: Two belief functions are close if their betting

functions are close, i.e. if their pignistic transformations are close. Any distance between probability distributions can then

be used. Zouhal and Denœux in [61] proposed to measure the distance between a belief function and an indicator vector

using the L2 measure based upon the inner product:

10 Initially conjectured in [35], a formal proof of this property has been recently proposed in [9].
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⊗s
Betx(m1,m2) = m′

1 Bet′x Betx m2 (36)

where Betx is the N × 2N − 1 matrix introduced in Section 2.2 and the elements of Bet′x Betx are:

Betx2(A, B) = |A ∩ B|
|A|.|B| , for A, B ∈ 2X\∅ (37)

As previously noticed, Bet′x Betx is not of full rank, i.e. positive but only semi-definite, and the corresponding distance d
(2)
Betx is

a pseudometric. Nevertheless, Bet′x Betx quantifies the interaction between the focal elements and d
(2)
Betx satisfies (sp1). Also,

we have that Betx2(A, B) = 1
N
P(A, B)whenever p is uniform over X , and d

(2)
P = √|X|d(2)

Betx thus d
(2)
Betx has the same properties

than d
(2)
P . Note also that the inner product (36) could have been defined through the square matrix Bet, as introduced at

the end of Section 2.2 leading to a different distance d
(2)
Bet but which remains proportional to d

(2)
Betx as d

(2)
Bet = √

2d
(2)
Betx . The

distance d
(2)
Betx has been used in [45] for learning discounting rates.

In [19], Denœux defines a series of Euclidean distances d(2)
ν in the very special case of BPAs with N + 1 focal elements (N

singletons plus X). Three distances defined in this work turn out to be d
(2)
Intx, d

(2)
Incx and d

(2)
Betx .

3.2.3. Chebyshev distances – L∞
Chebyshev distance is induced by the supremum (or infinity or uniform) norm and is equal to the limit of (20) when p

grows toward +∞. L∞ relies on a max operator and with p = ∞, (20) becomes:

d
(∞)
W (m1,m2) = max

A⊆X

{
|(U m1)

′eA − (U m2)
′ eA|

}
(38)

Aiming to assess the quality of Bayesian approximation algorithms of belief functions, Tessem [57] proposed three “error

measures” which turn to belong to the L∞ family of Chebyshev distances:

d
(∞)
Bet (m1,m2) = max

A⊆X

{
|(Bet m1)

′ eA − (Bet m2)
′ eA|

}
(39)

the equivalent measures between belief values:

d
(∞)
Inc (m1,m2) = max

A⊆X

{
|(Inc′ m1)

′ eA − (Inc′ m2)
′ eA|

}
(40)

and between plausibilities of singletons:

d
(∞)
Intx (m1,m2) = max

x∈X

{
|(Int m1)

′ ex − (Int m2)
′ ex|

}
(41)

where ex is the singleton basis vector corresponding to x.

Note that L∞ distances can be applied to continuous spaces in an easier way than L1 and L2 distances, hence a possible

interest for continuous belief functions.

3.3. Inner product family

The general formulation for an inner product in EX is:

⊗W (m1,m2) = m′
1Wm2 (42)

All the inner products introduced in Section 3.2 are summarized in Table 2.While they are all symmetric and linear regarding

the first component (axioms (ip1) and (ip2)), some of them are degenerate as their matrix W is not positive-definite.

TheweightingmatricesW canbe qualified as either a similarity or a dissimilaritymatrix over 2X , hence the corresponding

superscript either s or d on ⊗.

3.3.1. Inner product

Dempster’s conflict quantifies the conflict between two belief functions from two independent sources. Although it has

not been defined to quantify a dissimilarity between two belief functions it has however been used for such a purpose as

for instance in [52] or [23] in clustering algorithms and to some extent in [50] in association algorithms. It can be put under

the form of an inner product as:

⊗d
Int(m1,m2) = m′

1(1 − Int) m2 (43)

where Int is thematrix of intersections between two subsets of X introduced in Eq. (5). Note that (1− Int) is neither positive
nor negative nor definite and should thus not be called an inner product but we put it in this family ofmeasures as it satisfies

the general formulation. We can also write:
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Table 2

Inner products⊗W (m1,m2) = m1
′Wm2 . The superscript s of⊗means thatW is a similarity measure between sets, whereas

a superscript d means that W is a dissimilarity measure between sets.

Notation W Def. Ref.

⊗s
I I I(A, B) = 1 iff A = B [49]

⊗s
Inc IncInc′ Inc(A, B) = 1 iff A ⊆ B [14]

⊗s
Int Int Int(A, B) = 1 iff A ∩ B �= ∅ [17]

⊗s
Int2 Int′Int Int(A, B) = 1 iff A ∩ B �= ∅ [57]

⊗s
Intx Int′xIntx Intx(x, B) = 1 iff x ∈ B [57]

⊗s
Bet Bet′Bet Bet(A, B) = |A∩B|

|B| -

⊗s
Betx Bet′xBetx Betx(x, A) = |x∩A|

|A| [61]

⊗s
P P P(A, B) = p(A∩B)

p(A)p(B)
[26]

⊗s
J Jac J(A, B) = |A∩B|

|A∪B| [35]

⊗s
S S S(A, B) any similarity measure [24]

⊗s
F(S) F(S, R) F reward-penalty function [24]

⊗d
Int(m1,m2) = 1 − m′

1Int m2

= 1 − ⊗s
Int(m1,m2) (44)

where⊗s
Int(m1,m2) is Dempster’s agreement as called in [26]. We can easily check that Int defines a similarity measure over

2X (Axioms (s1), (s2) and (s3) are satisfied) whereas 1 − Int defines a dissimilarity measure over 2X (Axioms (d1), d(2) and

(d3)’ satisfied in 2X ). Unfortunately, this does not imply that ⊗s
1−Int is a dissimilarity measure in EX as it is indeed not the

case. We note that ⊗d
Int = ⊗d

1−Int = 1 − ⊗s
Int .

The inadequacy of ⊗d
Int to characterize the dissimilarity between belief functions has been noticed in several works, as

for instance in [41] or in [43] where the authors highlight the fact that the internal conflict⊗d
Int(m,m) is not 0.We can easily

check that ⊗d
Int indeed satisfies (d1) and (d2) but fails to satisfy the reflexivity and separability axioms (d3)’ and (d3)” and

thus⊗d
Int is a nonmetric measure.⊗d

Int however satisfies the strong structural property (sp1). Fig. 6 in Section 5.4 illustrates

⊗d
Int ’s behavior compared to a known dissimilarity measure.

Based on ⊗d
Int , Ristic and Smets [50] defined what they called an “additive global dissimilarity measure” as:

dRS(m1,m2) = − log
(
1 − ⊗d

Int(m1,m2)
)

(45)

Although dRS has the properties of ⊗d
Int , it suffers from the same drawback than ⊗d

Int and does not satisfy the axiom (d3)’ of

reflexivity, i.e. dRS(m,m) �= 0. Moreover, dRS is not defined whenever ⊗d
Int(m1,m2) = 1.

3.3.2. Cosine

The cosinemeasure however, defines ameasure of similarity between belief functions. A general formulation is given by:

cosW (m1,m2) = m′
1W m2

||m1||W · ||m2||W (46)

In [59],Wen et al. use⊗s
I = m′

1I m2 to define a cosinemeasure resulting in a validmeasure of similarity between two belief

functionswhich, as⊗s
I , does not satisfy any structural property. A distancemeasure in EX with semipseudometric properties

can be obtained by:

cosdW (m1,m2) = 1 − cosW (m1,m2) (47)

Indeed, cosdW satisfies Axioms (d1), (d2) and (d3)’ as soon asW is positive semidefinite. More particularly, (d2) and (d3)’ are

always satisfied whatever the properties of W, but (d1) is satisfied only if W is positive.

3.4. Fidelity family

Fidelity is a popular measure of distance in quantum theory, and is based on the square root of probability distributions.

The general formulation of the fidelity coefficient, also known as the Bhattacharyya coefficient, for belief functions is given

by [6]:

⊗
1
2
W (m1,m2) = √

m1
′
W

√
m2 (48)

where
√

m = (m1)
1
2 is the vector obtained by taking the square roots of each component ofm. All measures of this family

are functions of some⊗
1
2
W . Fidelity family is also called “squared-chord” family and is a popular distancewith paleontologists
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and in palynology studies. In probability theory, the Bhattacharyya (or fidelity) coefficient measures the amount of overlap

between two statistical populations.

It has been originally extended to belief functions by Ristic and Smets in [50] who proposed a Hellinger distance11 [33]

based on ⊗
1
2
W :

d
(H)
I (m1,m2) =

(
1 − ⊗

1
2
I (m1,m2)

) 1
2

(49)

A modified version of (49) has been proposed by Florea and Bossé in [27], obtained by replacing the square root by any

a-root, with a ∈ IR+∗. Based on I, this distance does not satisfy either (sp1) nor (sp2) but it is nevertheless a full metric

(Axioms (d1) to (d4) are satisfied).

3.5. Information-based distances

Besides the extension of the probabilistic form of themetric distance family, another quantification of the idea of distance

between two belief functions can be materialized by estimating the difference in their information content. As introduced

at the beginning of this section, the first attempt is due to Perry and Stephanou [46] who proposed an extension of Kullback–

Liebler divergence. But other works are worth mentioning.

In [20], in order to measure the quality of belief function approximations, Denœux proposed to quantify the distance

between m1 and m2 by the difference between the information contents of m1 and m2. The measure of uncertainty used

is the generalized cardinality of a belief function defined in [25] as GC(m) = ∑
A⊆X m(A)|A| or using the matrix notation,

GC(m) = m′cA where cA is the column vector of cardinalities 12 of A (denoted as CardA in [53]). We have thus:

dGC(m1,m2) = |(m1 − m2)
′cA| (50)

The general formulation was also mentioned in [20]:

dU(m1,m2) = |U(m1) − U(m2)| (51)

where U is any uncertainty measure defined for belief functions (see for instance [39] for a survey). Note that for the

practical use in [20] it was always true that GC(m1) ≥ GC(m2) and thus that dGC(m1,m2) ≥ 0. Although the original

measure did not explicitly include the absolute value we think it was implicit. And accordingly we have decided to add it

in the present definition insuring that the resulting distance satisfies the minimal property of nonnegativity (axiom (d1)).

Moreover, with the formulation (50) axioms (d2) and (d3)’ are satisfiedwhile axioms (d3)” and (d4) are not satisfied,making

dGC a semipseudometric.

Also, in [19], Denœux proposed that a cross-entropy measure dCE(m1,m2) = −m′
1 log2(m2) + (1−m1)

′ log2(1−m2)

could be used as an alternative to the Euclidean distance d(2)
ν for optimizing neural network weights.

3.6. Two-dimensional distances

In [41], Liu defined a two-dimensional measure to formally quantify the conflict between belief functions, as she noticed

that neither Dempster’s conflict alone, nor a distance alone is satisfactory. She then proposed the following index:

d2DL =
(
⊗d

Int(m1,m2); d(∞)
Bet (m1,m2)

)
(52)

She argues that “only when both measures are high, it is safe to say the evidence is in conflict” [41]. Indeed, ⊗d
Int acts as the

anglemeasurewhile d
(∞)
Bet is themetricmeasure, the twomeasures being based on two different inner products (see Section

4.5). This principle can be extended to any other two inner products and the general formulation extending (52) is then:

d2D(W,V)(m1,m2) =
(
⊗d

W (m1,m2); dV (m1,m2)
)

(53)

It is not required for ⊗d and d to be defined upon the same inner product, hence one may be based on a weighting matrix

W while the other on a different matrix V, possibly increasing the complementarity of the two measures. As we will see in

Section 5.2, the correlation coefficient between measures may also be a criterion for building two-dimensional measures.

4. Outcomes

We provided four general formulations of distances between belief functions in Eqs. (20), (42), (47) and (48), which

encompassmost of the distances defined so far in the technical literature. Moreover, we provided a general formulation (53)

11 Up to a factor 2.
12 Vector cA is closely linked to vector gA introduced in Section 3.1 and we have gA = cA−1

|X|−1
.
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Table 3

Distances between belief functions in their respective family (Lp , inner product or Fidelity), according to several definitions of the weighting matrix W. The

distances defined so far are in gray cells while new ones are in white cells.

Lp Inner product Fidelity

W = U′U p = 1 p = 2 p = ∞ IP cos (Hellinger)

I d
(1)
I d

(2)
I d

(∞)
I ⊗s

I cosI d
(H)
I

IncInc′ d
(1)
Inc d

(2)
Inc d

(∞)
Inc ⊗s

Inc cosInc d
(H)
Inc

Int d
(1)
Int d

(2)
Int d

(∞)
Int ⊗s

Int cosInt d
(H)
Int

Int′Int d
(1)
Int2 d

(2)
Int2 d

(∞)
Int2 ⊗s

Int2 cosInt2 d
(H)
Int

Int′xIntx d
(1)
Intx d

(2)
Intx d

(∞)
Intx ⊗s

Intx cosIntx d
(H)
Intx

Bet′Bet d
(1)
Bet d

(2)
Bet d

(∞)
Bet ⊗s

Bet cosBet d
(H)
Bet

Bet′xBetx d
(1)
Betx d

(2)
Betx d

(∞)
Betx ⊗s

Betx cosBetx d
(H)
Betx

P d
(1)
P d

(2)
P d

(∞)
P ⊗s

P cosP d
(H)
P

Jac d
(1)
J d

(2)
J d

(∞)
J ⊗s

J cosJ d
(H)
J

S d
(1)
S d

(2)
S d

(∞)
S ⊗s

S cosS d
(H)
S

F(S, R) d
(1)
F(S,R) d

(2)
F(S,R) d

(∞)
F(S,R) ⊗s

F(S,R) cosF(S,R) d
(H)
F(S,R)

Table 4

Axiomatic properties of the distances defined so far (see Table 1 and Section 2.5 for the axiom definitions).

Distance Metric Structural

(d1) (d2) (d3)’ (d3)” (d4) (sp1) (sp2) (sp3)

d
(H)
I × × × × ×

d
(2)
I × × × × ×

d
(2)
Inc × × × × × ×

d
(2)
J × × × × × ×

d
(2)
F(J) × × × × × ×

d
(2)
D × × × × × ×

d
(2)
Betx × × × × ×

d
(∞)
Bet × × × × ×

d
(2)
P × × × × ×

dGC × × × ×
cosdI × × ×
⊗d

Int × × ×
dRS × × ×
dBP × × ×
dBP(1) × × ×
dBP(2) × ×
dPS × × ×
dPS(1) × × ×
dPS(2) × ×

for a two-dimensional measure. In this section we synthesize further our survey and sketch some ideas to be developed in

future research.

4.1. Summary and new measures

Table 3 summarizes the distances defined so far (gray cells) and provides the natural generalizations (white cells) hence

new distances.

Twenty-three distances have been defined so far and the generalization has led tomore than 40 newones. TheMinkowski

L2 family is the most numerous while L1 and L∞ have been seldom used. Extending the L2 distances to the study of L1 and

L∞ distances requires in some cases a Cholesky decomposition of the weighting matrices W. A single cosine measure has

been defined so far but a multitude of measures of this kind remains to be explored. This comment also applies to the

Hellinger distance and to other distances of the Fidelity family which are based on Bhattacharyya’s coefficient involving the

squared-root of the BPAs.

4.2. Metric and structural properties

Table 4 summarizes the algebraic properties of the distances together with their structural properties.

Distances with the highest number of metric properties appear at the top of the table while weakest metric distances

appear at the bottom. All distances are symmetric. Most of the distances are nonnegative. However, the two composite

measures dPS and dBP may have negative values due in both cases to their second member dPS(2) and dBP(2) respectively.

The second discrimination criterion between the distances is the definiteness property (d3) which splits into the reflexivity

property (d3)’ and the separability property (d3)”. The reflexivity means that d(m,m) = 0 and if not satisfied makes

the distances qualifying as nonmetric distances. In our case of study, distances not satisfying this property are all based on
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Table 5

Classes of distances according to their metric properties crossed with the structural properties. The (�) symbol on dGC indicates that it satisfies the weak

structural property (sp2) while the others all satisfy the strong structural property (sp1).

Metric Pseudometric Semipseudometric Nonmetric

Structural d
(2)
D d

(2)
F(J) d

(2)
J d

(2)
Inc d

(2)
Betx d

(∞)
Bet d

(2)
P dGC (�) ⊗d

Int dRS dBP dPS

Non-structural d
(2)
I d

(H)
I cosdI

Table 6

Ranges of the distances.

Min. Max.

d
(H)
I 0 1

d
(2)
I 0

√
2

d
(2)
Inc 0

√
2|X|−1

d
(2)
J 0

√
2

d
(2)
F(J) 0

√
2

d
(2)
D 0

√
2

d
(2)
Bet 0

√
2

d
(∞)
Bet 0 1

d
(2)
P 0

√
2|X|

dGC 0 |X| − 1

cosdI 0 1

⊗d
Int 0 1

dRS 0 +∞
dBP -1 +∞
dPS -1 2|X|

Dempster’s conflict or Dempster’s rule. The reflexivity property is often desirable as intuitively, two identical belief functions

should have a distance of 0. The separability property guaranties that a null value for the distance implies that it has been

computed between two identical belief functions. Only 6 distances satisfy (d3)”. To be able to conclude on the practical

utility of such a property a case by case study would be required since the possible situation of two distinct belief functions

yielding a null distance may not have a high impact in some practical situations. The last property is the triangle inequality

(d4) which guaranties that the direct path between two belief functions is always lower than when a third belief function is

involved. Among the metric distances, only dGC and cosdI do not satisfy (d4) which make them semipseudometrics.

Three distances do not satisfy any structural property, namely d
(2)
I , d

(H)
I and cosdI , all based obviously on the identity

matrix. dGC satisfies a weak form of structural property (sp2) and dPS satisfies two structural properties (sp1) and (sp3),

the latter property appearing to be even weaker than (sp2). The strong structural property (sp1) is satisfied by all the

other distances. Structural properties are desirable when quantifying the distance between belief functions as they allow to

distinguish the standard distances between probability distributions from the specific distances between belief functions.

Indeed, relaxing the additivity axiom does not shelter us from the particular feature of the space of belief functions whose

basis components remain linked by some underlying similarity measures or at least some interactions.

Eight (8) classes 13 have been identified and shown in Table 5 regarding the properties of Table 4, i.e. full metrics, pseudo-

metrics, semipseudometrics and nonmetric measures cross-tabulated with the structural properties.

Themost twopopulatedclassesare thestructuralmetrics (all belonging to the L2 family) and thestructuralnonmetrics.We

have only two distinct cases of pseudometrics (since d
(2)
Betx ∝ d

(2)
P ), based on the sameweightingmatrix and belonging to the

Minkowski family. The single structural semipseudometric dGC satisfies only theweak structural property. Althoughmost of

classes have at least one candidate, some are empty and in particularwe have no example of nonstructural pseudometric nor

nonmetric. Four distances namely d
(2)
Inc , d

(2)
J , d

(2)
F(J) and d

(2)
D qualify as structuralmetrics and satisfy thus the highest number of

properties considered in thiswork. The experimental study of distances’ behaviors of Section 5.2will be structured according

to these classes.

4.3. Normalization

All the distance measurements introduced in Section 3 have been presented without any normalization factor. In

Table 6, the range of each distance is computed, these values could possibly be used for normalizing the distances.

In accordance to the metric properties, all distances have a minimum value of 0, except dPS and dBP which can have

negative values. 14 Two distances are not bounded, dRS and dBP due to the use of the log function. Most of the maximum

values are constant while 4 depend on |X|.

13 We reserve the term“family” for categorizing thedistances according to their definitions (L2, cosine, Fidelity, etc.)while the term“class” is used for categorizing

the distances according to their axiomatic properties (full metric, pseudometric, etc.).
14 Note that the exact minimum value has not been computed and may been higher than -1 while being obviously negative.
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Fig. 2. Two dimensions for the measures of dissimilarity between belief functions.

4.4. Bayesian belief functions

The propertywhich guaranties that a distance between belief functions reduces to a known distance between probability

distributions whenever the belief functions are Bayesian is called “probability consistency”. Among the distances identified,

all the Minkowski distances reduce to the traditional Minkowski distances between probability distributions d(p1, p2) =
p
√|p1 − p2|p, p = 1, 2, +∞. The cosinemeasure remains the cosinemeasure restricted to the probability space. Dempster’s

conflict is 1 − p′
1p2 and corresponds to 1 minus the inner product between two probability distributions, dI(H) reduces to

a Hellinger distance. dPS , dBP , dRS dGC reduce to no known standard measures.

4.5. Metric and angle as complementary measures

At least two kinds of measures quantifying a notion of “distance” between three vectors v1, v2 and v3 exist: (1) themetric

which quantifies how close two vectors are from each others (d(v1, v2) < d(v1, v3) means that v2 is closer to v1 than v3
is (see Fig. 2(b))); (2) the angle which quantifies how orthogonal two vectors are (cos(v1, v2) < cos(v1, v3) means that v2
is more parallel (or less orthogonal) to v1 than v3 is (see Fig. 2(a))). Two vectors can thus be very far while collinear (angle

is null), whereas they can be very close while being orthogonal. Fig. 2 illustrates three cases of interaction between three

vectors: equal distances and different angles, equal angles and different distances and equal angles and equal distances.

There exist several pairs of vectors which have the same angle θ (or cosine value) and distinct distances, as in Fig. 2(a), the

pair (cos; d) does not allow to completely discriminate the interaction between vis as it defines a kind of “cone” around a

symmetry axis (see Fig. 2(c)).

Metric and cosine measures can thus be seen as complementary measures of distance between belief functions. In the

survey of Section 3, the pair (cosdI , d
(2)
I ), where cosdI = 1 − cosI , characterizes globally how much two belief functions are

far and orthogonal. This pair can be generalized to any other weighting matrix W, and also to other pairs (cosdW , dV ). Thus,
we have a general pair:

d2D(W,V)(m1,m2) =
(
cosdW (m1,m2); dV (m1,m2)

)
(54)

where the inner product ⊗d of (53) has been replaced by the cosine measure cosd in (54). Compared to the 2D measure

initiated by Liu [41], we change the inner product by the cosine measure because the latter has more metric properties than

the former, in particular it satisfies the reflexivity axiom (d3)’. This point will be developed in the following section in the

specific case of Dempster’s conflict.

4.6. Alternative to Dempster’s conflict

Whereas the metric distance is a natural measure of dissimilarity, the cosine measure is itself a natural measure of

similarity. Indeed, if θ denotes the angle between two vectors v1 and v2, then cos(θ) = −1 means that v1 and v2 are

opposite (v1 = −αv2, with α > 0), cos(θ) = 1 means that v1 and v2 are the collinear (v1 = αv2), cos(θ) = 0 means that

they are orthogonal and in between values represent intermediate similarity values. In the specific case of belief functions,

v = m and since m(A) ≥ 0 for all A ⊆ X , we always have that 0 ≤ cos(θ) ≤ 1.

Dempster’s conflict defines a notion of orthogonality in the sense that two belief functions are orthogonal (according to

Dempster) if their conflict is 1. However, as noticed in Section 3.3, Dempster’s conflict ⊗d
Int is even not a premetric as it fails

to satisfy the reflexivity axiom (d3)’, an essential property in many applications.
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In order to maintain the notion of conflict that it defines while having the properties of a semipseudometric, one could

think of the following cosine-based measure:

cosdInt(m1,m2) = 1 − m′
1Intm2

‖m1‖Int · ‖m2‖Int

(55)

= 1 − ⊗s
Int(m1,m2)√

⊗s
Int(m1,m1).

√
⊗s

Int(m2,m2)
(56)

where ‖ · ‖Int denotes the norm relatively to the matrix Int and ⊗s
Int is Dempster’s agreement. Indeed, normalizing the

inner product by both the norm of m1 and m2 guaranties that cosdInt(m,m) = 0, axiom (d3)’ of reflexivity is satisfied.

Unfortunately, because Int is nonpositive, cosdInt is not positive. So we gained one interesting property but we lost another

one, the nonnegativity (d1).

The alternative matrix Int Int however is positive definite and could thus be used as a basis for an alternative measure

to Dempster’s conflict:

cosdInt2(m1,m2) = 1 − m′
1Int Intm2

‖m1‖Int2.‖m2‖Int2

(57)

= 1 − Pl′1Pl2
‖Pl1‖.‖Pl2‖ (58)

where we noticed that Int is symmetric and Pl = Int m. Now the three basic axioms of a semipseudometric measure (d1),

(d2) and (d3)’ are satisfied. But remains the question of the meaning of IntInt. Indeed, the elements of IntInt are:

Int2(A, B) = |{A ∩ C} ∩ {B ∩ C}|, ∀C ⊆ X (59)

that is the number of subsets C ⊆ X intersecting with both A and B. cossInt2 quantifies thus a “second-order” notion of

agreement since Int2 quantifies how much two given subsets intersect through the mediation of a third one. The “first-

order” agreement (Dempster’s) only quantifies if or if not two given subsets intersect directly with each other. Theminimum

agreement between two subsets A and B according to Int2(A, B) is 2N−2 and is reached when A ∩ B = ∅ and A and B are

singletons. If A∩ B = ∅ and A and B are not singletons, then Int2 is thus higher and depends on the cardinalities of A and B.

The maximum of Int2(A, B) is Int2(X, X) = 2N − 1. Thus, two belief functions without focal elements in interaction, which

would mean a null agreement according to ⊗s
Int may exhibit a nonnull agreement according to cossInt2.

The associated Euclidean distance in the inner product space with Int Int as weighting matrix is:

d
(2)
Int2(m1,m2) =

√
(m1 − m2)′Int′Int(m1 − m2) (60)

= ‖Pl1 − Pl2‖ (61)

= ‖Bel1 − Bel2‖ (62)

= d
(2)
Inc (63)

Thus, the standard Euclidean distance between belief functionswould be the associatedmetric to ameasure of angle derived

from a “second-order” Dempster’s conflict. This is due to the duality of Pl and Bel in the closed world. Nonetheless, the two

weighting matrices Int Int and Inc Inc′ are different and thus cosdInt2 �= cosdInc and they measure two distinct kinds of

angles.

4.7. Encoding of belief functions

The four well known functions of basic probability assignment, belief, plausibility and commonality are four different

encodings of the same information. Defining Euclidean distances between two functions of the same kind leads to different

distances when referring to a representation of reference that is a BPA, hence different values for the same two objects. For

instance, we saw that d
(2)
I (the Euclidean distance between BPAs) is different from d

(2)
Inc (the Euclidean distance between

belief functions). Also we have d
(2)
Inc = d

(2)
Int2 due to the duality between Pl and Bel under the closed world assumption. But

d
(2)
Inc′ , the Euclidean distance between two commonality functions built upon the weighting matrix Inc′Inc is different from

the three others and would be worth to be considered in future works.

Besides these well known encodings of belief functions other encodings can be defined with however less obvious

interpretations. For instance, we may define:

fJ = UJm (64)

where UJ is the upper triangle matrix resulting from the Cholesky decomposition of the Jaccard matrix Jac. Or expressed

under the form of Eq. (10):
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fJ(A) = ∑
B⊆X

m(B)UJ(A, B) (65)

where UJ(A, B) is the element (A, B) of matrixUJ . Equivalently, we could define fD, fP , etc, corresponding respectively to Dice

matrix, BPAM matrix.

The interest of considering the basic encoding for belief functions (i.e. the BPA) lies in the fact that it highlights the

strong structural property of the weighted Euclidean distance. However, we could define some combinations such as for

instance BelJ defined such that BelJ = UJBel = UJ Inc
′m. Then the Euclidean distance between Bel1J and Bel2J would be

defined as:

d
(2)
I (Bel1J , Bel

2
J ) = d

(2)
IncJ(m1,m2)

=
√

(Bel1J − Bel2J )
′(Bel1J − Bel2J )

=
√

[UJ Inc
′(m1 − m2)]′UJ Inc

′(m1 − m2)

=
√

(m1 − m2)′Inc Jac Inc′(m1 − m2) (66)

Such formulations would reinforce the impact of the similarity between the basis vectors of EX .

4.8. Generalizations

1. Fuzzy belief functions:

The above measures can be further generalized to fuzzy belief functions by making the weights W(A, B) be

measures of similarity between fuzzy sets. As an example, in [47] Petit-Renaud and Denœux defined an error

criterion for fuzzy belief structures based on ⊗d
PR(m1,m2) = m′

1DPRm2 where DPR is the matrix composed of

elements dPR(̃A, B̃) which itself is a distance between fuzzy sets Ã and B̃.

2. Open world assumption:

We restricted the studyof thedistances to the closedworld assumption (or normality assumption, i.e.m(∅) = 0).

Although the extension to the open world assumption would require a deeper analysis, a preliminary analysis

showed that most of the distances presented keep all their properties for BPAs with a non-null mass to the empty

set,whileothersdegenerate frommetrics topseudometrics. The latter are Lp distances involvingweightingmatrices

whichbecomenondefinitewhen thedimensione∅ is added (d
(p)
J ,d

(p)
F(J),d

(p)
D ). It seems thatd

(p)
Inc keeps its definiteness

property.

5. Experimental comparison

5.1. Toy example

We illustrate the behavior of the different classes of distances of Table 5 on the toy example introduced in [35] and reused

in [41]. Let X = {x1, . . . , x10} be a frame of discernment and let Belt be a belief function defined over X such that

Belt = {(X, 0.1), ({x2, x3, x4}, 0.05), ({x7}, 0.05), (At, 0.8)} (67)

At is a variable focal element ranging from {x1} to X , one element xi being added at each step. Let Bel∗ be a categorical

belief function representing a targeted belief function (e.g. representing the ground truth in a given problem) and defined

by

Bel∗ = ({x1, x2, x3, x4, x5}, 1) (68)

The three graphics in Fig. 3 show the behaviors of the distances identified in Section 3 assembled into the several families

identified in Table 5, i.e. (full) metrics in the first graphic, pseudometrics and semipseudometrics in the second graphic, and

nonmetrics in the third graphic. Nonstructural distances are represented with dashed lines. In each of the three graphics,

distances of a variable belief function Belt (one focal element At only is variable) to a categorical belief function Bel∗ of the

form m∗({x1, x2, x3, x4, x5}) = 1 are shown, with At varying from {x1} to {x1, . . . , x10}. For the simulations, all distances

have been normalized with the range values of Table 6.

For themetrics classofdistances (first graphic),weobservesimilarbehaviors forall the structuraldistanceswhiledenoting

however a small difference for the d
(2)
Inc distance. The two nonstructural distances behave similarly while differently from

the structural ones, as they unsurprisingly remain constant when At varies and only decrease when At reaches A
∗ at time

step 5. We also note a slight increase of d
(2)
I at the last time step when At reaches X since the number of focal elements for

Belt has changed from 4 to 3.
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Fig. 3. Distances of a variable belief function Belt (i.e. At varies from {x1} to {x1, . . . , x10}) to a categorical belief function Bel∗ , i.e. m∗({x1, x2, x3, x4, x5}) = 1.

Nonstructural distances are represented with dashed lines.

The secondgraphic shows thebehaviors of thepseudometrics and the semipseudometrics together. Only 3pseudometrics

are visible since d
(2)
Betx ∝ d

(2)
P and because the distances have been normalized, d

(2)
P and d

(2)
Betx are confounded. The two

pseudometrics of type dBet (and of course d
(2)
P ) behave similarly. The two semipseudometrics have distinct behaviors: dGC

increases linearly with the number of elements in At , while the nonstructural cosine measure remains constant while At

varies and reaches a minimum at time step 5 where At reaches A
∗.

Thenonmetricmeasures are shown in the thirdgraphic. The twobelief functions consideredyield toa constantDempster’s

conflict, ⊗d
Int(mt,m

∗) = mt({x7})m∗({x1, x2, x3, x4, x5}) = 0.05, and consequently dRS and dBP remain also very low since

they are based on ⊗d
Int . We observe however a slight increase of dBP due to its second member dBP(2). The behavior of dPS is

similar to other nonstructural distances while we note a decrease at the last time step when At = X . Indeed, dPS(1), the first
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member of dPS , remains constant and equal to 5 except when At reaches A
∗ where it is 3. The secondmember dPS(2) remains

negative15 .

In the light of the example above, it appears that the structural properties (sp1) and (sp2) strongly influence the behavior

of the different distances. Moreover, the structural dissimilarity (sp3) (only satisfied by dPS) is not sensitive to this example

of convergence toward a categorical belief function, and makes this “structural distance” close to nonstructural ones. The

accounting of the focal elements interaction defined by (sp3) (i.e. the interaction of sets of focal elements) is thus too rough

compared to (sp1) and (sp2). Also, we do not denote any significant behavior difference betweenmetrics and pseudometrics

while distances involving Dempster’s conflict behave similarly.

5.2. Semantic comparison

The results discussed in this part give only a hint of what a deeper study of this kind would bring. Rather than drawing

specific and complete conclusions, themain aim of this experimental section is to highlight some properties of the distances

that would be worth considering when selecting a distance for a particular practical purpose.

We follow the techniquedescribed in [11] for analyzing the semantic similarities betweendissimilaritymeasuresbetween

belief functions. Ns belief functions are randomly generated {Beln}Ns

n=1 (as described by Algorithm 1).

Input: X: Frame of discernment

Output: Bel: Belief function (under the form of a BPA, m)

Generate the power set of X → 2X ;

Generate a random permutation of 2X → R(X);
Generate a integer between 1 and Nmax → k;

foreach First randomly generated k elements of R(X) do
Generate a value within [0, 1] → mk;

end

Normalize the vector m = [m1 . . .mk] → m∗;
m(Ak) = mk;

Algorithm 1: Random generation of a belief function.

We have generated five different types of BPAs: (1) simple support, i.e. m(A) = α, m(X) = 1 − α,(2) dichotomous, i.e.

m(A) = α, m(A) = β , m(X) = 1 − α − β , (3) complete, i.e. with 2|X| − 1 focal elements (4) with a fixed number of focal

elements and (5) consonant, i.e.with nested focal elements. These types of BPAs have been used in the following to compare

some behaviors of the distances in specific experiments.

The distances previously introduced in Section 3 and gathered in a set D are then computed for each of the Ns pairs

(mr,mn), where mr is a unique belief function of reference also randomly generated. Note that because the algorithms for

random BPAs generation all involve a controlled number of focal elements (either 2, 3, 5 or 2|X| − 1) and that the masses are

then uniformly assigned, the impact of the BPA of reference on the result provided in the following is very low.

The resultspresented in this sectionhavebeenobtained for framesofdiscernmentwhosecardinality |X| ranges from2to8,

for anumberof replicationsNs between1000and10000dependingon theexperiment, and for a set of distancesof cardinality

|D| = 15. In d
(2)
P , the prior probability distribution has been assumed to be uniform over X so that P(A, B) = N|A∩B|

|A|.|B| . In d
(2)
F(J),

F has been chosen as in [24]. Although in the original paper [46], for the function dPS , the authors restricted the mis to be

simple support belief functions, we removed this restriction in our simulations.

Fig. 4 shows the scatter plots for each pair
(
di(m

r,mn), dj(m
r,mn)

)
, di, dj ∈ D for a cardinality of X of 8. The boxes

on the diagonal of the scatter plot show the distributions of the measures. A straight line in the scatter plots means strong

correlation (as for instance between dRS and⊗d
Int , in accordance to their respective definitions)while a cloud of pointsmeans

a weak correlation (as for instance between ⊗d
Int and d

(∞)
Bet ).

Due to the ordering of the distances according to their axiomatic properties, the correlation of the metrics and pseudo-

metrics appear on the top of the figure. We observe a strong correlation between all the structural distances of the Lp family

metrics and pseudometrics. No clear conclusion can be drawn whether the correlation is due to the family (Lp) or to the

class (metric versus pseudometric), since we do not have enough examples of each class. We can simply notice a stronger

correlation between the three nonstructural metrics whose weighting matrix are known similarity measures between the

focal sets, say d
(2)
J , d

(2)
F(J) and d

(2)
D than with the nonstructural metric d

(2)
Inc .

The distances involving Dempster’s conflict (and the conflict itself) ⊗d
Int , dRS , dPS and dBP are not correlated with the

metric and pseudometric distances. Note that in this particular case of complete BPAs, the first member of the distance dPS
is always 0 and thus we only observe the second member dPS(2) in the scatter plots. For other kinds of BPAs, we would have

observed steps corresponding to the integer values dPS(1).

15 Note that here the values have been normalized relatively to |F1 ∩ F2| + 1 which is the maximum value in this example, and not to 2|X| so that the values

are not too close to 0.
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Fig. 4. Scatter plots for a frame of discernment of 8 elements and a random generation of complete BPAs.

The dGC distancewhich qualifies as a semipseudometric seems to be noncorrelatedwithmost of the distances apart from

those involving Dempster’s conflict, and would be perhaps a good candidate to be used in a 2D dimensional measure.

The scatter plots of Fig. 4 give an idea of the strength and direction of correlations between distances. In the following

subsections, we will detail some particular features of these correlations on different kinds of BPAs. The comments below

should then be read in correspondence to this scatter plots figure.

5.3. Distributions

The distributions for each distance appear on the diagonal of Fig. 4. Twomain features of these distributions are discussed

here: (1) the symmetry and (2) the range of values.

A nonsymmetric distributionmeans that higher (or lower) values of distances will be favored and that amedian distance

will not be in themiddle of the interval range. The symmetrical properties of the distributions of distance valuesmay have an

impact in practice for instance if a threshold is used to select “close” belief functions to a reference one. This threshold should

then be adjusted taking into account the symmetry of the distribution. Most of the distributions of distance values show a

symmetric bell shape, except dBP and dGC whose distributions are nonsymmetric. The nonsymmetry of dGC may be explained

by the squared-root added to its definition, which was perhaps a too drastic and simple way to render it nonnegative and

symmetric.

The range of the distance values may have an impact in practice especially when the distance is used in optimization or

as a selection criterion. For instance, if the range of values is low, then the computations may be very sensitive to rounding

errors when comparing distance values. Thus, a wide range is desirable. The range values (maximumminus minimum) are

displayed in Fig. 5 for complete BPAs and simple support BPAs and for |X| varying. It appears that for complete BPAs, the

range decreases with the increase of |X| even if the theoretical value is constant (see Table 6). This can be explained by the

conjunction of the fact that the BPAs are complete and the constraint of the BPAs’ coordinates which are positive and to sum

up to 1. We also observe a particular behavior for dPS whose range is very close to 0. Indeed, since the BPAs are complete,

dPS(1) is always null. But dPS(2) is always below 1 and the distance has been normalized by 2|X| which corresponds to the

maximum value possibly reached by dPS .

For simple support BPAs however, the range evolves differently. Indeed, because the number of focal elements is fixed to

two, the range remains almost constant or at least neither increase nor decreases whatever the value of |X|. In practice, that
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Fig. 5. Evolution of the ranges of the distances according to the cardinality of X . The statistics have been computed over 10000 replications.

Table 7

Correlation matrix of the distances corresponding to the scatter plot of Fig. 4, i.e. for |X| = 8 and Ns = 6000. The pair (⊗d
Int , d

(∞)
Bet ) proposed as a 2D measure of

conflict in [41] has been highlighted in gray.

d
(2)
I 1.00

d
(2)
Inc 0.30 1.00

d
(2)
J 0.28 0.85 1.00

d
(2)
F(J) 0.29 0.83 0.99 1.00

d
(2)
D 0.22 0.85 0.98 0.96 1.00

d
(2)
P 0.20 0.87 0.90 0.88 0.95 1.00

d
(2)
Betx 0.20 0.87 0.90 0.88 0.95 1.00 1.00

d
(∞)
Bet 0.19 0.81 0.85 0.83 0.89 0.94 0.94 1.00

d
(H)
I 0.95 0.29 0.28 0.28 0.22 0.20 0.20 0.19 1.00

cosdI 0.99 0.30 0.28 0.29 0.22 0.20 0.20 0.19 0.94 1.00

⊗d
Int −0.02 −0.09 0.06 0.06 0.06 0.07 0.07 0.07 −0.03 −0.02 1.00

dRS −0.02 −0.09 0.06 0.06 0.06 0.07 0.07 0.07 −0.03 −0.02 1.00 1.00

dPS −0.16 −0.10 −0.03 −0.02 −0.04 −0.04 −0.04 −0.04 −0.16 −0.17 0.42 0.42 1.00

dBP −0.04 −0.13 0.05 0.04 0.09 0.15 0.15 0.15 −0.04 −0.04 −0.27 −0.27 −0.47 1.00

dGC 0.03 0.26 0.08 0.09 0.05 −0.01 −0.01 −0.01 0.03 0.03 0.07 0.07 0.09 −0.61 1.00

d
(2)
I d

(2)
Inc d

(2)
J d

(2)
F(J) d

(2)
D d

(2)
P d

(2)
Betx d

(∞)
Bet d

(H)
I cosdI ⊗d

Int dRS dPS dBP dGC

means that in an application inwhich thenumber of focal elements is intended to grow (like in a long sequential combination

process), then we must be conscious that the algorithm may be more sensitive to rounding errors as the cardinality of X is

high. Perhaps, a kind of normalization relatively to the number of focal elements may be considered.



A.-L. Jousselme, P. Maupin / International Journal of Approximate Reasoning 53 (2012) 118–145 139

2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

|X|

C
or

re
la

tio
n 

co
ef

fi
ci

en
ts

c(d
J
(2);d

I
(2))

c(d
J
(2);d

Inc
(2))

c(d
J
(2);d

GC
)

c(d
J
(2);d

Bet
∞ )

c(d
J
(2);d

I
(H))

c(d
J
(2);cos

I
d)

c(d
J
(2);⊗

Int
d )

c(d
J
(2);d

PS
)

c(d
J
(2);d

BP
)

Nonstructural distances

Metrics and 
pseudometrics

Nonmetrics and 
semipseudometrics

Fig. 6. Evolution of the correlation coefficient between the metric d
(2)
J and a representative subset of other distances according to the cardinality of |X|.

Besides the range, higher-order statistics such as the standard deviation, the skewness and the kurtosis are interesting:

The standard deviation is a measure of spread and according to equivalent arguments in favour of a wide range, a large

spread may be desirable; the skewness is a measure of symmetry and could be studied more deeply for applications where

the symmetry of distance values is involved; and the kurtosis is a measure of “peakedness”. For instance, in a preliminary

study we observed the effect of the F function on d
(2)
J according to these statistics: d

(2)
F(J) is more spread (0.0075 > 0.0071),

less symmetric (0.252 < 0.285) and less peaked (0.484 < 0.516) than d
(2)
J . The impact of the F function over Jac can also

be observed in box (1, 1) in Fig. 8.

5.4. Correlation

For each pair of measures in D, we computed a Pearson coefficient, and built corresponding matrix whose elements are:

c(di, dj) =
∑N

n=1(d
n
i − d̄i)(d

n
j − d̄j)√∑N

n=1(d
n
i − d̄i)2

√∑N
n=1(d

n
j − d̄j)2

(69)

with d̄i = 1
N

∑N
n=1 di. If c(di, dj) = 0, the twodistances areuncorrelatedwhile thedistances are all themore correlatedwhen

c(di, dj) is close to 1 (or -1). A negative value for c(di, dj)means that di and dj are in dissimilarity/similarity correspondence,

while a positive value means that they are either in dissimilarity/dissimilarity correspondence or in similarity/similarity

correspondence. As an illustration, a characteristic of nonmetric distances is that their correlation coefficient relatively to a

known dissimilarity measure is either positive or negative. This behavior can be seen in Fig. 6, relatively to the metric d
(2)
J .

Table 7 lists the correlation coefficients corresponding to the scatter plots of Fig. 4.

A low correlation (close to 0) between twomeasuresmeans that they quantify twodistinct (and possibly complementary)

aspects of the distance between two belief functions while a high correlationmeans that they are redundant. Hence, weakly

correlated pairs of distances could be good candidates for two dimensional measures. The pair (⊗d
Int, d

(∞)
Bet ) proposed in

[41] has been highlighted in gray in the table. It has a quite low correlation and is thus justified for a 2D measure, according

this criterion (see also Fig. 9). However, alternative pairs could be interesting candidates such as (d
(∞)
Bet , dGC), (d

(2)
Bet , dPS),

(d
(2)
P , dPS) and (d

(∞)
Bet , dBP) as their correlation coefficients are very close to 0.

Fig. 6 shows the evolution of the correlation coefficient between a metric of reference d
(2)
J and all the others while |X|

increases. We chose d
(2)
J as a representative distance of the class of structural metrics, i.e. distances satisfying the higher

number of properties. Any other distance in this class could have been chosen instead, such as d
(2)
Inc . Due to the strong

correlation of the distances in that class, the results obtained with d
(2)
Inc for instance were very similar to the one presented

here in Figs. 6 and 8. For a clearer visualization, we selected a subset of distances representative of their respective classes.

In particular, we dropped one of the two obviously strongly correlated pairs of distances, say (d
(2)
J , d

(2)
F(J)), (d

(2)
Betx, d

(2)
P ),

(⊗d
Int, dRS). Note that we observed similar results with the metric d

(2)
Inc .

In general, the correlation decreases as |X| increases. The nonmetric distances point out their nature since their corre-

lation coefficient is either positive or negative meaning that they are either in dissimilarity/dissimilarity correspondence
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or in similarity/dissimilarity with a known dissimilarity measure (here a full metric). We observe that the evolution of the

correlation coefficient is very similar for all the nonstructural distances whatever their metric properties. Also, the metrics

and pseudometrics have similar behavior.

Fig. 7 shows the evolution of the correlation coefficient of the pair (d
(∞)
Bet , ⊗d

Int) defined as a 2D measure in [41], for four

different kinds of BPAs: Simple support, consonant, dichotomous and complete.

It appears that for consonant BPAs, both measures are highly correlated although the correlation decrease slightly as

|X| increases. In this case, the 2D measure may be not so much informative. However, the correlation is relatively low for

complete BPAs and even lower as |X| is high, which makes the 2Dmeasure very relevant in that case. Finally, nothing can be

said in the case of simple support and dichotomous BPAs although the correlation seems to oscillate around 0.5 in the latter

case.

Fig. 8 shows the superposition of the scatter plots for several cardinalities of X , for a structural metric chosen as repre-

sentative of its class (d
(2)
J ) against three types of distances: Other L2 metrics (first column), nonmetric distances or a Fidelity

measure (second column) and L2 pseudometrics (third column).

As already observed in Fig. 5, the ranges of values for all themeasures decrease as |X| increases. This is due to theparticular
kind of belief functions (complete BPAs) used in the simulations.

In light of the combined results of Figs. 6, 7 and 8, several remarkable cases need to be discussed:

• c(d
(2)
J , d

(2)
Inc ) – � in Fig. 6 and box (4, 1) in Fig. 8: While the correlation between these two structural metric distances

is very high for |X| = 2, it decreases sightly as |X| increases. Moreover, the slope a increases with |X|: It moves from

a y = x relation for |X| = 2 to a y = ax relation with a > 1, and thus the one-to-many relation increases. In

other words, the range of d
(2)
J decreases more than that of d

(2)
Inc . Hence, for high cardinalities a single value for d

(2)
J

corresponds to many distinct values for d
(2)
Inc .

• c(d
(2)
J , d

(∞)
Bet ) – � in Fig. 6 and box (3, 3) in Fig. 8: We observe here the difference between structural metric d

(2)
J

and structural pseudometric and see that the latter yields several values when the former gives only one. The same

behavior occurs for the other pseudometrics.

• c(d
(2)
J , ⊗d

Int) – � in Fig. 6 and box (2, 2) in Fig. 8: The nonmetric characteristic of ⊗d
Int mentioned in Section 3.3 is

illustrated here as the correlation is either positive (dissimilarity) or negative (similarity). The same behavior can be

observed for dPS (and also for dBP although not shown here).

• c(d
(2)
J , d

(H)
I ) – − in Fig. 6 and box (4, 2) in Fig. 8: This illustrates the comparative behavior between two metrics of

two distinct families, namely L2 and Fidelity respectively. The correlation between these two distances decreases a

lot as |X| increases. Moreover, the values of d
(H)
I are clearly distinct for distinct sizes of X .

• c(d
(2)
J , d

(2)
I ) – − in Fig. 6 and box (3, 1) in Fig. 8: This illustrates the behaviour of two metrics of the same family

L2, one structural d
(2)
J and one nonstructural d

(2)
I . The correlation between these two distances is very similar to the

correlation between two other L2 distances (for instance d
(2)
J and d

(2)
D ) while a different behavior is observed between

two distances of distinct families d
(2)
J of L2 and d

(H)
I of Fidelity. This may be a clue for a deeper analysis of the impact

of the families of distances with respect to their metric or structural properties.

Fig. 7. Evolution of the correlation coefficient of the two dimensional measure (d
(∞)
Bet , ⊗d

Int) according to the cardinality of |X| for several kinds of BPAs.
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Fig. 8. Superposition of the scatter plots for several cardinalities ofX (from2 to 7)with 1000 replications of complete BPAs. Three groups of distances are compared

to a structural metric chosen as reference, d
(2)
J .

Fig. 9. Superposition of the scatter plots for several cardinalities of X (from 2 to 7) between four distances: Two pseudometrics of the same family, one similarity

measure and Dempster’s conflict.

Fig. 9 shows the scatter plots between several classes of measures: Two pseudometrics belonging to the same family Lp,

d
(∞)
Bet (L∞) and d

(2)
Betx (L2), Dempster’s conflict⊗d

Int and the similaritymeasure cossI = 1−cosdI . We first observe that although

the two pseudometrics are based on the same weighting matrix Bet′Bet, these behave differently when compared to the

two other distances. This highlights the impact of the p coefficient within the Lp family. Maybe the latter could be the subject

of further investigations.
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The correlation c(d
(2)
Bet , cos

s
I ) is remarkable as it remains high whatever the cardinality of X while it is very distinct from

one cardinality to another.

The couple (d
(∞)
Bet , ⊗d

Int) corresponds to Liu’s 2D index and should be completed by the curve with diamonds in Fig. 7

corresponding to complete BPAs. In both graphics, we see that the correlation remains very low as |X| increases. However, we

also observe that the space in the scatter plot is only half-covered (upper-right triangle) meaning that a kind of correlation

exists between these two measures. The Pearson coefficient is only one measure of similarity among others, and behaviors

such as this one suggest studying other measures of similarity between distances.

5.5. Additive trees

Based on the correlation coefficient values, we built the additive trees (dendrograms) for all six cardinalities of X (Fig. 10).

The dendrograms are built using the correlation coefficient given by Eq. (69) as a similarity measure. For the construction

and interpretation of the trees the method presented in Sattath and Tversky’s classical paper [51] is used. The dissimilarity

Fig. 10. Additive trees computed on a Pearson correlation matrix between 10000 replications based on Algorithm 1 generating complete BPAs over a frame of

discernment whose cardinality varies from 2 to 8.
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of two objects represented on these additive trees is simply given by the length of the path joining them, the longer the path,

the more dissimilar are the objects under study.

Referring to the classes identified in Table 5, four groups of distances are considered:Nonmetrics (red circles), pseudomet-

rics (green circles), metrics (blue circles) and nonstructural distances (yellow circles). These four groups clearly appear in the

trees although the tree structure is slightly sensitive to the size of the frame of discernment. Rather than the family (Lp, inner

product or Fidelity) it appears that the axiomatic properties play a major role in the similarity of the distances. Moreover,

the nonstructural property seems even stronger than the metric properties since the three nonstructural distances remain

clearly regrouped as |X| varies while one is a dissimilarity (cosdI ), one is a L2 metric (d
(2)
I ) and one is a Fidelity metric (d

(H)
I ).

Metrics and pseudometrics are very close to each other and form two very compact groups. Nonmetric distances are not

so well assembled in a compact group but seem to behave very differently from the others. This is very clear for dPS while

dGC is sometimes closer to the other kinds of distances. We must outline that the nonmetric distances have another feature

in common apart from their nonmetric properties, which is that they all involve Dempster’s conflict. A deeper analysis

including other nonmetric measures not based on⊗d
Int or metric measures based on⊗d

Int would be required to discriminate

the influence of ⊗d
Int relatively to the metric properties.

The results of the experimentations presented here are not exhaustive and a lot of work remains to be done. However,

these preliminary results highlighted some remarkable experimentally observed features that we have been able to relate

to the theoretical properties. In practice, these results suggest that the choice of a measure should be guided by (1) the

structural properties, a structural distance being in general more desirable for the quantification of the distance between

two belief functions, (2) the metric properties since the definiteness may be also desirable in some cases. Regardless these

“technical” properties, semantic properties would also be worth some consideration as the meaning of the distance may be

of prime importance in some applications. For instance, dGC quantifies a difference in information contents which is very

different from d
(p)
Bet which quantifies the difference in decision abilities. It is not clear however how important is the family

the distances belong to, although we have been able to notice some impact of the p coefficient in the Lp family for instance.

6. Conclusions and future work

In this paper we have presented, together with a synthesis of their most important properties, a survey of the main

dissimilarity measures defined so far using the mathematical framework of evidence theory. The principal results of this

study are briefly recapitulated here, followed by a short discussion on future work.

We have first outlined the existence of a formal link between the existing distances defined so far in the mathematical

framework of belief functions and the theory of inner products. This helped us propose a grouping of the dissimilarity

measures into five families, i.e. Composite, Minkowski, Inner product, Fidelity and Information-based, families for which

we have provided general formulations. Building upon these generalizations we have subsequently defined more than 40

new distances. Then, we have proposed a classification based on the one hand (a) on the study of the metric properties of

the surveyed distance measurements allowing us to distinguish four groups (metrics, pseudometrics, semipseudometrics

and nonmetric measures) and on the other hand (b) on structural properties allowing us the distinguish two groups of

measurements (structural and nonstructural). This classification has been used later in the paper to interpret the results of

simulations aimed at the experimental comparison of the surveyed distance measurements.

We have also provided a general expression for two-dimensional indexes expressed as couples composed of a cosine

and a dissimilarity and proposed an alternative formulation to Dempster’s conflict based on a cosine measure. Using a toy

example about the monitoring of the convergence to a categorical belief function, we have illustrated the behavior of the

different families of distance measurements.

Experimental comparisonsbasedon the simulationof randomly assignedbeliefmasses for different frameof discernment

cardinalities allowed us to highlight the practical effects of the theoretical properties outlined in the present work, in

particular (a) that of the non metric property of Dempster’s conflict, as well as (b) the high correlation of measurements

obtainedwithin thesame formal family.Wehave thusbeenable to relateexperimentalobservations to someof the theoretical

properties of the measures studied, admittedly an unexpected finding for the authors.

This paper can be seen as a first attempt to synthesize the theoretical properties of the existing distancemeasurements in

themathematical framework of evidence theory.Muchwork remains to be done, either on the theoretical or on the practical

front of this emerging specialty. In future work we will refine the theoretical underpinnings outlined here, and pursue the

study of the new distance measurements discovered in the present study.

An important endeavor is to develop practical applications using the newly discovered measurements and to study their

behavior under different contexts of use. In the short term, future experimental work will include the development and

comparison of clustering and information retrieval methods.
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