7 research outputs found

    Infinite combinatorial issues raised by lifting problems in universal algebra

    Full text link
    The critical point between varieties A and B of algebras is defined as the least cardinality of the semilattice of compact congruences of a member of A but of no member of B, if it exists. The study of critical points gives rise to a whole array of problems, often involving lifting problems of either diagrams or objects, with respect to functors. These, in turn, involve problems that belong to infinite combinatorics. We survey some of the combinatorial problems and results thus encountered. The corresponding problematic is articulated around the notion of a k-ladder (for proving that a critical point is large), large free set theorems and the classical notation (k,r,l){\to}m (for proving that a critical point is small). In the middle, we find l-lifters of posets and the relation (k, < l){\to}P, for infinite cardinals k and l and a poset P.Comment: 22 pages. Order, to appea

    Some simple theories from a Boolean algebra point of view

    Full text link
    We find a strong separation between two natural families of simple rank one theories in Keisler's order: the theories TmT_\mathfrak{m} reflecting graph sequences, which witness that Keisler's order has the maximum number of classes, and the theories Tn,kT_{n,k}, which are the higher-order analogues of the triangle-free random graph. The proof involves building Boolean algebras and ultrafilters "by hand" to satisfy certain model theoretically meaningful chain conditions. This may be seen as advancing a line of work going back through Kunen's construction of good ultrafilters in ZFC using families of independent functions. We conclude with a theorem on flexible ultrafilters, and open questions.Comment: [MiSh:1218], 38 page
    corecore