223,694 research outputs found

    Two Case Studies in Measuring Software Maintenance Effort

    Get PDF

    Surveying the factors that influence maintainability: research design

    Get PDF
    We want to explore and analyse design decisions that influence maintainability of software. Software maintainability is important because the effort expended on changes and fixes in software is a major cost driver. We take an empirical, qualitative approach, by investigating cases where a change has cost more or less than comparable changes, and analysing the causes for those differences. We will use this analysis of causes as input to following research in which the individual contributions of a selection of those causes will be quantitatively analysed

    Predicting and Evaluating Software Model Growth in the Automotive Industry

    Full text link
    The size of a software artifact influences the software quality and impacts the development process. In industry, when software size exceeds certain thresholds, memory errors accumulate and development tools might not be able to cope anymore, resulting in a lengthy program start up times, failing builds, or memory problems at unpredictable times. Thus, foreseeing critical growth in software modules meets a high demand in industrial practice. Predicting the time when the size grows to the level where maintenance is needed prevents unexpected efforts and helps to spot problematic artifacts before they become critical. Although the amount of prediction approaches in literature is vast, it is unclear how well they fit with prerequisites and expectations from practice. In this paper, we perform an industrial case study at an automotive manufacturer to explore applicability and usability of prediction approaches in practice. In a first step, we collect the most relevant prediction approaches from literature, including both, approaches using statistics and machine learning. Furthermore, we elicit expectations towards predictions from practitioners using a survey and stakeholder workshops. At the same time, we measure software size of 48 software artifacts by mining four years of revision history, resulting in 4,547 data points. In the last step, we assess the applicability of state-of-the-art prediction approaches using the collected data by systematically analyzing how well they fulfill the practitioners' expectations. Our main contribution is a comparison of commonly used prediction approaches in a real world industrial setting while considering stakeholder expectations. We show that the approaches provide significantly different results regarding prediction accuracy and that the statistical approaches fit our data best

    Estimating development effort in free/open source software projects by mining software repositories: A case study of OpenStack

    Get PDF
    Because of the distributed and collaborative nature of free/open source software (FOSS) projects, the development effort invested in a project is usually unknown, even after the software has been released. However, this information is becoming of major interest, especially-but not only-because of the growth in the number of companies for which FOSS has become relevant for their business strategy. In this paper we present a novel approach to estimate effort by considering data from source code management repositories. We apply our model to the OpenStack project, a FOSS project with more than 1,000 authors, in which several tens of companies cooperate. Based on data from its repositories and together with the input from a survey answered by more than 100 developers, we show that the model offers a simple, but sound way of obtaining software development estimations with bounded margins of error.Gregorio Robles, Carlos Cervig on and Jes us M. Gonz alez-Barahona, project SobreSale (TIN2011-28110). and The work of Daniel Izquierdo has been funded in part by the Torres Quevedo program (PTQ-12-05577

    Annotated bibliography of software engineering laboratory literature

    Get PDF
    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author
    • ā€¦
    corecore