6 research outputs found

    Structural liveness of petri nets is ExpSpace-hard and decidable

    Get PDF
    Place/transition Petri nets are a standard model for a class of distributed systems whose reachability spaces might be infinite. One of well-studied topics is verification of safety and liveness properties in this model; despite an extensive research effort, some basic problems remain open, which is exemplified by the complexity status of the reachability problem that is still not fully clarified. The liveness problems are known to be closely related to the reachability problem, and various structural properties of nets that are related to liveness have been studied. Somewhat surprisingly, the decidability status of the problem of determining whether a net is structurally live, i.e. whether there is an initial marking for which it is live, remained open for some time; e.g. Best and Esparza (Inf Process Lett 116(6):423–427, 2016. https://doi.org/10.1016/j.ipl.2016.01.011) emphasize this open question. Here we show that the structural liveness problem for Petri nets is ExpSpace-hard and decidable. In particular, given a net N and a semilinear set S, it is decidable whether there is an initial marking of N for which the reachability set is included in S; this is based on results by Leroux (28th annual ACM/IEEE symposium on logic in computer science, LICS 2013, New Orleans, LA, USA, June 25–28, 2013, IEEE Computer Society, pp 23–32, 2013. https://doi.org/10.1109/LICS.2013.7)

    Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States

    Get PDF
    A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with transitions between successive configurations. A probabilistic VASS consists of a VASS along with a probability distribution over the transitions for each state. Qualitative properties such as state and configuration reachability have been widely studied for VASS. In this work we consider multi-dimensional long-run average objectives for VASS and probabilistic VASS. For a counter, the cost of a configuration is the value of the counter; and the long-run average value of a computation for the counter is the long-run average of the costs of the configurations in the computation. The multi-dimensional long-run average problem given a VASS and a threshold value for each counter, asks whether there is a computation such that for each counter the long-run average value for the counter does not exceed the respective threshold. For probabilistic VASS, instead of the existence of a computation, we consider whether the expected long-run average value for each counter does not exceed the respective threshold. Our main results are as follows: we show that the multi-dimensional long-run average problem (a) is NP-complete for integer-valued VASS; (b) is undecidable for natural-valued VASS (i.e., nonnegative counters); and (c) can be solved in polynomial time for probabilistic integer-valued VASS, and probabilistic natural-valued VASS when all computations are non-terminating

    On the Home-Space Problem for Petri Nets and its Ackermannian Complexity

    Full text link
    A set of configurations H is a home-space for a set of configurations X of a Petri net if every configuration reachable from (any configuration in) X can reach (some configuration in) H. The semilinear home-space problem for Petri nets asks, given a Petri net and semilinear sets of configurations X, H, if H is a home-space for X. In 1989, David de Frutos Escrig and Colette Johnen proved that the problem is decidable when X is a singleton and H is a finite union of linear sets with the same periods. In this paper, we show that the general (semilinear) problem is decidable. This result is obtained by proving a duality between the reachability problem and the non-home-space problem. In particular, we prove that for any Petri net and any semilinear set of configurations H we can effectively compute a semilinear set C of configurations, called a non-reachability core for H, such that for every set X the set H is not a home-space for X if, and only if, C is reachable from X. We show that the established relation to the reachability problem yields the Ackermann-completeness of the (semilinear) home-space problem. For this we also show that, given a Petri net with an initial marking, the set of minimal reachable markings can be constructed in Ackermannian time
    corecore