5 research outputs found

    Mutual Mobile Membranes with Timers

    Full text link
    A feature of current membrane systems is the fact that objects and membranes are persistent. However, this is not true in the real world. In fact, cells and intracellular proteins have a well-defined lifetime. Inspired from these biological facts, we define a model of systems of mobile membranes in which each membrane and each object has a timer representing their lifetime. We show that systems of mutual mobile membranes with and without timers have the same computational power. An encoding of timed safe mobile ambients into systems of mutual mobile membranes with timers offers a relationship between two formalisms used in describing biological systems

    Solving SAT with Active Membranes and Pre-Computed Initial Con gurations

    Get PDF
    In this paper we provide algorithms for solving the SAT problem using P systems with active membranes with neither polarization nor division rules. The semi- uniform solutions are given under the assumption that initial con gurations (either al- phabet or structure) of exponential size are pre-computed by well-de ned P systems (P systems with replicated rewriting and P systems with active membranes and membrane creation, respectively) working in polynomial time. An important observation is that we specify how the pre-computed initial con gurations are constructed

    Anchoring the value of cryptocurrency

    Get PDF
    A decade long thrive of cryptocurrency has shown its potential as a source of alternative-finance and the security and the robustness of the underpinning blockchain technology. However, most cryptocurrencies fail to show inimitability and their meanings in the real world. As a result, they usually start off as favourites but quickly become the outcasts of the digital asset market. The blockchain society attempts to anchor the value of cryptocurrency with real values by employing smart contracts and link it with computation resources and the digital-productivity that have value and demands in the real world. But their attempts have some undesirable effects due to a limited number of practical applications. This limitation is caused by the dilemma between high performance and decentralisation (universal joinability). The emerging of blockchain sharding models, however, has offered a possible solution to address this dilemma. In this paper, we explore a financial model for blockchain sharding that will build an active link between the value of cryptocurrency and computation resources as well as the market and labour behaviours. Our model can adjust the price of resources and the compensation for maintaining a system based on those behaviours. We anchor the value of cryptocurrency by the amount of computation resources participated in and give the cryptocurrency a meaning as the exchange between computation resources globally. Finally, we present a working example which, through financial regularities, regulates the behaviour of anonymous participants, also incents/discourages participation dynamically
    corecore