1,288 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    New Concept of PLC Modems: Multi-Carrier System for Frequency Selective Slow-Fading Channels Based on Layered SCCC Turbocodes

    Get PDF
    The article introduces a novel concept of a PLC modem as a complement to the existing G3 and PRIME standards for communications using medium- or high-voltage overhead or cable lines. The proposed concept is based on the fact that the levels of impulse noise and frequency selectivity are lower on high-voltage lines than on low-voltage ones. Also, the demands for “cost-effective” circuitry design are not so crucial as in the case of modems for low-voltage level. In contract to these positive conditions, however, there is the need to overcome much longer distances and to take into account low SNR on the receiving side. With respect to the listed reasons, our concept makes use of MCM, instead of OFDM. The assumption of low SNR is compensated through the use of an efficient channel coding based on a serially concatenated turbo code. In addition, MCM offers lower latency and PAPR compared to OFDM. Therefore, when using MCM, it is possible to excite the line with higher power. The proposed concept has been verified during experimental transmission of testing data over a real, 5 km long, 22kV overhead line

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams

    Communication Systems Design for Downhole Acoustic Telemetry

    Get PDF
    The goal of this dissertation is to design a reliable and efficient communication system for downhole acoustic communication. This system is expected to operate in two different modes. A broadband high data rate mode in case of transmission of an image or a video file and a narrowband low data rate mode in case of transmission of sensor readings. This communication system functions by acoustic vibration of the pipes and uses them as the channel instead of installing long cables in areas that are hard to reach. However, this channel has unique characteristics where it exhibits several passbands and stopbands across the frequency spectrum. The communication system is expected to get around those challenges in both modes of operation. In the broadband case, the system uses Orthogonal Frequency Division Multiplexing to transmit data across multiple orthogonal frequencies spanning multiple passbands combined with an error-correction code to recover some of the losses caused by the channel. In the narrowband case, a short packet is transmitted at a low data rate where the signal spectrum can fit inside one passband. However, transmitting short packets induces a new synchronization problem. This dissertation investigates and explores in detail the problem of synchronization on short packets where each synchronization stage is examined. A simple algorithm that exploits the presence of error-correction codes is proposed for the frame synchronization stage and demonstrated to approach the optimal solution. Then, all synchronization stages are combined in order to study the effect of propagated errors caused by imperfect synchronization from one stage to the next and what can be done in the design of the packet and the receiver structure to mitigate those losses. The resulting synchronization procedure is applied to the pipe strings and demonstrated to achieve desirable levels of performance with the assistance of equalization at the receiver
    corecore