14,226 research outputs found

    Advanced Fabrication and Characterization of Magnetic Nanowires

    Get PDF
    Magnetic nanowires feature unique properties that have attracted the interest of different research areas from basic physics over biomedicine to data storage. The combination of crystalline and shape anisotropy is mainly responsible for the magnetic properties of the nanowires, whereby different methods for tuning those properties are available. The nanowires typically represent single-domain particles, and magnetization switching occurs via domain walls nucleated at the ends of the nanowire and traversing it. Combined with a high biocompatibility, iron or iron oxide nanowires can be used as nanorobots for biomedical applications, destroying cancer cells, or delivering drugs. The nanowires are also attractive for data storage, especially in a three-dimensional device, because of the high-domain wall speed that has been theoretically predicted. This chapter offers an introduction to the electrochemical synthesis of cylindrical nanowires in anodic aluminum oxide (AAO) templates. Template modification techniques such as barrier layer thinning, barrier layer etching, and diameter modulation are discussed. Advanced fabrication techniques of nanowires with varying structural and chemical variations such as multisegmented and core-shell nanowires are elaborated. The characterization of single nanowires encompassing physical, magnetic, and electrical techniques is covered

    Spin transport in ferromagnet-InSb nanowire quantum devices

    Full text link
    Signatures of Majorana zero modes (MZMs), which are the building blocks for fault-tolerant topological quantum computing, have been observed in semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such as InSb and InAs NWs with proximity-induced superconductivity. Realizing topological superconductivity and MZMs in this most widely-studied platform also requires eliminating spin degeneracy, which is realized by applying a magnetic field to induce a helical gap. However, the applied field can adversely impact the induced superconducting state in the NWs and also places geometric restrictions on the device, which can affect scaling of future MZM-based quantum registers. These challenges could be circumvented by integrating magnetic elements with the NWs. With this motivation, in this work we report the first experimental investigation of spin transport across InSb NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe signatures of spin polarization and spin-dependent transport in the quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic gating tunes the observed magnetic signal and also reveals a transport regime where the device acts as a spin filter. These results open an avenue towards developing MZM devices in which spin degeneracy is lifted locally, without the need of an applied magnetic field. They also provide a path for realizing spin-based devices that leverage spin-orbital states in quantum wires.Comment: 30 pages, 12 figure

    Nanowire quantum dots tuned to atomic resonances

    Get PDF
    Quantum dots tuned to atomic resonances represent an emerging field of hybrid quantum systems where the advantages of quantum dots and natural atoms can be combined. Embedding quantum dots in nanowires boosts these systems with a set of powerful possibilities, such as precise positioning of the emitters, excellent photon extraction efficiency and direct electrical contacting of quantum dots. Notably, nanowire structures can be grown on silicon substrates, allowing for a straightforward integration with silicon-based photonic devices. In this work we show controlled growth of nanowire-quantum-dot structures on silicon, frequency tuned to atomic transitions. We grow GaAs quantum dots in AlGaAs nanowires with a nearly pure crystal structure and excellent optical properties. We precisely control the dimensions of quantum dots and their position inside nanowires, and demonstrate that the emission wavelength can be engineered over the range of at least 30 nm30\,nm around 765 nm765\,nm. By applying an external magnetic field we are able to fine tune the emission frequency of our nanowire quantum dots to the D2D_{2} transition of 87^{87}Rb. We use the Rb transitions to precisely measure the actual spectral linewidth of the photons emitted from a nanowire quantum dot to be 9.4±0.7μeV9.4 \pm 0.7 \mu eV, under non-resonant excitation. Our work brings highly-desirable functionalities to quantum technologies, enabling, for instance, a realization of a quantum network, based on an arbitrary number of nanowire single-photon sources, all operating at the same frequency of an atomic transition.Comment: main text (20 pages, 3 figures) plus supplementary information, Nano Letters (2018

    Magnetization pinning in modulated nanowires: from topological protection to the "corkscrew" mechanism

    Full text link
    Diameter-modulated nanowires offer an important paradigm to design the magnetization response of 3D magnetic nanostructures by engineering the domain wall pinning. With the aim to understand its nature and to control the process, we analyze the magnetization response in FeCo modulated polycrystalline two-segment nanowires varying the minor diameter. Our modelling indicates a very complex behavior with a strong dependence on the disorder distribution and an important role of topologically non-trivial magnetization structures. We demonstrate that modulated nanowires with a small diameter difference are characterized by an increased coercive field in comparison to the straight ones which is explained by a formation of topologically protected walls formed by two 3D skyrmions with opposite chiralities. For a large diameter difference we report the occurrence of a novel pinning type called here the "corkscrew": the magnetization of the large diameter segment forms a skyrmion tube with a core position in a helical modulation along the nanowire. This structure is pinned at the constriction and in order to penetrate the narrow segments the vortex/skyrmion core size should be reduced
    • …
    corecore