3 research outputs found

    The True Destination of EGO is Multi-local Optimization

    Full text link
    Efficient global optimization is a popular algorithm for the optimization of expensive multimodal black-box functions. One important reason for its popularity is its theoretical foundation of global convergence. However, as the budgets in expensive optimization are very small, the asymptotic properties only play a minor role and the algorithm sometimes comes off badly in experimental comparisons. Many alternative variants have therefore been proposed over the years. In this work, we show experimentally that the algorithm instead has its strength in a setting where multiple optima are to be identified

    Tuning optimization algorithms for real-world problems by means of surrogate modeling

    No full text
    The case-specific tuning of parameters of optimization metaheuristics like evolutionary algorithms almost always leads to significant improvements in performance. But if the evaluation of the objective function is computationally expensive, which is typically the case for real-worlds problems, an extensive parameter tuning phase on the original problem is prohibitive. Therefore we have developed another approach: Provided that a (computationally cheap) surrogate model is available that reflects the structural characteristics of the original problem then the parameter tuning can be run on the surrogate problem before using the best parameters thereby identified for the metaheuristic when optimizing the original problem. In this experimental study we aim to assess how many function evaluations on the original problem are necessary to build a surrogate model endowed with the characteristics of the original problem and to develop a methodology that measures to which extent such a matching has been achieved

    Hypervolume based metaheuristics for multiobjective optimization

    Get PDF
    The purpose of multiobjective optimization is to find solutions that are optimal regarding several goals. In the branch of vector or Pareto optimization all these goals are considered to be of equal importance, so that compromise solutions that cannot be improved regarding one goal without deteriorating in another are Paretooptimal. A variety of quality measures exist to evaluate approximations of the Paretooptimal set generated by optimizers, wherein the hypervolume is the most significant one, making the hypervolume calculation a core problem of multiobjective optimization. This thesis tackles that challenge by providing a new hypervolume algorithm from computational geometry and analyzing the problem’s computational complexity. Evolutionary multiobjective optimization algorithms (EMOA) are state-of-the-art methods for Pareto optimization, wherein the hypervolume-based algorithms belong to the most powerful ones, among them the popular SMS-EMOA. After its promising capabilities have already been demonstrated in first studies, this thesis is dedicated to deeper understand the underlying optimization process of the SMS-EMOA and similar algorithms, in order to specify their performance characteristics. Theoretical analyses are accomplished as far as possible with established and newly developed tools. Beyond the limitations of rigorous scrutiny, insights are gained via thorough experimental investigation. All considered problems are continuous, whereas the algorithms are as well applicable to discrete problems. More precisely, the following topics are concerned. The process of approaching the Pareto-optimal set of points is characterized by the convergence speed, which is analyzed for a general framework of EA with hypervolume selection on several classes of bi-objective problems. The results are achieved by a newly developed concept of linking single and multiobjective optimization. The optimization on the Pareto front, that is turning the population into a set with maximal hypervolume, is considered separately, focusing on the question under which circumstances the steady-state selection of exchanging only one population member suffices to reach a global optimum. We answer this question for different bi-objective problem classes. In a benchmarking on so-called many-objective problems of more than three objectives, the qualification of the SMS-EMOA is demonstrated in comparison to other EMOA, while also studying their cause of failure. Within the mentioned examinations, the choice of the hypervolume’s reference point receives special consideration by exposing its influence. Beyond the study of the SMS-EMOA with default setup, it is analyzed to what extent the performance can be improved by parameter tuning of the EMOA anent to certain problems, focusing on the influence of variation operators. Lastly, an optimization algorithm based on the gradient of the hypervolume is developed and hybridized with the SMS-EMOA
    corecore