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Abstract

The purpose of multiobjective optimization is to find solutions that are optimal
regarding several goals. In the branch of vector or Pareto optimization all these
goals are considered to be of equal importance, so that compromise solutions that
cannot be improved regarding one goal without deteriorating in another are Pareto-
optimal.

A variety of quality measures exist to evaluate approximations of the Pareto-
optimal set generated by optimizers, wherein the hypervolume is the most sig-
nificant one, making the hypervolume calculation a core problem of multiobjective
optimization. This thesis tackles that challenge by providing a new hypervolume al-
gorithm from computational geometry and analyzing the problem’s computational
complexity.

Evolutionary multiobjective optimization algorithms (EMOA) are state-of-the-art
methods for Pareto optimization, wherein the hypervolume-based algorithms be-
long to the most powerful ones, among them the popular SMS-EMOA. After its
promising capabilities have already been demonstrated in first studies, this the-
sis is dedicated to deeper understand the underlying optimization process of the
SMS-EMOA and similar algorithms, in order to specify their performance charac-
teristics. Theoretical analyses are accomplished as far as possible with established
and newly developed tools. Beyond the limitations of rigorous scrutiny, insights
are gained via thorough experimental investigation. All considered problems are
continuous, whereas the algorithms are as well applicable to discrete problems.
More precisely, the following topics are concerned. The process of approaching
the Pareto-optimal set of points is characterized by the convergence speed, which
is analyzed for a general framework of EA with hypervolume selection on several
classes of bi-objective problems. The results are achieved by a newly developed
concept of linking single and multiobjective optimization. The optimization on the
Pareto front, that is turning the population into a set with maximal hypervolume,
is considered separately, focusing on the question under which circumstances the
steady-state selection of exchanging only one population member suffices to reach a
global optimum. We answer this question for different bi-objective problem classes.
In a benchmarking on so-called many-objective problems of more than three objec-
tives, the qualification of the SMS-EMOA is demonstrated in comparison to other
EMOA, while also studying their cause of failure. Within the mentioned examina-
tions, the choice of the hypervolume’s reference point receives special consideration
by exposing its influence. Beyond the study of the SMS-EMOA with default setup,
it is analyzed to what extent the performance can be improved by parameter tuning
of the EMOA anent to certain problems, focusing on the influence of variation oper-

ators. Lastly, an optimization algorithm based on the gradient of the hypervolume
is developed and hybridized with the SMS-EMOA.
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Preface

Motivation

As known from every day life, people typically do not only have just one wish but
several—that may even contradict. In the context of optimization, this means that
a solution to a problem shall not just be optimized regarding one goal but fulfill
several demands simultaneously. So, considering a real-world problem as a single-
objective one does in the best case stem from modesty or priority setting but may
be inadequate and a sign of too abstract modeling and over-simplification. The
field of multiobjective optimization contrarily provides adequate tools to handle
real-world problems canonically by respecting multiple objectives at once.

By the approach of Pareto or vector optimization the solution’s quality is not a
single function value but given by a vector containing one value for each objective.
As all objectives are treated to be of equal importance, the resolution of a multi-
objective problem is a set of Pareto-optimal solutions, containing those solutions
which cannot be improved in one objective without worsening in another, thus each
representing an optimal compromise. The Pareto-optimal set is typically too large
to be captured completely or can practically not be exactly attained in continuous
objective spaces. Thus, optimizers can only be expected to achieve an approxima-
tion of the Pareto-optimal set. To this end, it is an important task to compare
the quality of such approximations. Several quality measures exist, wherein the
hypervolume indicator is the most significant and suitable one, making it a key
aspect of multiobjective optimization. The hypervolume measures the size of the
objective space consisting of worse points than the considered set, so that capturing
the objective space up to the optimal set corresponds to its maximization. The
space is bounded by a reference point which is a parameter of the hypervolume.
The hypervolume calculation is time-consuming since the computation time grows
exponentially with the dimension of the objective space.

The hypervolume computation as the core problem of multiobjective
optimization is tackled in this thesis by analyzing the hypervolume
complexity, giving a simple hypervolume algorithm, and dealing with
the choice of its reference point.

Evolutionary multiobjective optimization algorithms (EMOA) developed to state-
of-the-art methods for Pareto optimization. Evolutionary algorithms (EA) are
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randomized search heuristics that are inspired by the notion of the natural evolution
as a process of stepwise improvement through variation and selection. They are
especially suitable for complex, badly understood real-world problems since they
do not require any problem information such as gradients but handle the problem
as a black box. Due to their effectiveness and universal applicability, they gained
more and more acceptance in industrial applications, especially the EMOA for
multiobjective optimization.

In principle, EMOA can consist of operators developed for single-objective opti-
mization, except for the selection. The selection decides about which solutions to
keep or to discard for the next iteration. This requires that the solutions are com-
parable, which is not directly possible in the multiobjective case since the solutions
are vectors. When one solution is better in one and worse in another objective
than a second solution, they cannot be sorted. The recent approach is to invoke
quality measures to evaluate the current approximation of the EMOA, resulting in
the so-called indicator-based EMOA.

Among these algorithms is the SMS-EMOA, where SMS stands for S-metric (a
synonym for hypervolume) selection. As it is agreed that an optimizer shall gener-
ate an approximation of the optimal set with a high hypervolume value, the idea
to directly aspire the hypervolume maximization within the EMOA seems natural
and doing this in the selection solves the problem of how to handle incomparable
solutions: A solution’s quality is evaluated by its contribution to the hypervol-
ume of the current approximation. This is a single-objective problem enabling the
solutions to be sortable.

Nowadays, the SMS-EMOA is a popular and accepted algorithm which is in the
research community acknowledged by nearly 300 citations (due to |Google Scholar
(2011)) of the initial conference publication and the journal article, and for example
in Germany reflected by its recommendation in the guidelines of the Association
of German Engineers (VDI) |VDI-Fachbereich Bionik| (2011)). Yet, although it took
just one day to develop SMS-EMOA and it has been competitive right from the
start, it is not obvious why and it took years to understand its optimization process.

This thesis is dedicated to the deeper understanding of the optimization
process underlying hypervolume-based EMOA like the SMS-EMOA and
to specify their performance characteristics.

Overview and Format

The introductory Chapter [I] gives fundamental concepts on a basic level also amend-
able for readers unfamiliar with the topic. The two main chapters and each section
start with specific and technically detailed preliminaries for the respective subject.
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Chapter 2| deals with the calculation of the hypervolume, starting with a com-
prehensive overview of its properties including results from literature in simplified
notation and additional insights (Sec. 2.1). Our main contributions, the lower
bound of the problem complexity and the upper bound as an algorithm are given

in the Sections 2.2 and 2.3

The characteristics of hypervolume-based EMOA are studied in Chapter It
focuses on the SMS-EMOA and starts by recapitulating its concept and results
of previous studies, next to an overview of other EMOA considered in compari-
son (Sec. . First, the convergence towards the Pareto front is analyzed sepa-
rately (Sec. , followed by a study of the selection behavior on the Pareto front
(Sec. . In Sec. , the whole process of the SMS-EMOA and other optimizers
is benchmarked on problems with many objectives. The performance influence of
tuning the parameters—especially the variation—of SMS-EMOA is studied in Sec-
tion [3.5] Finally, a hybridization of the SMS-EMOA and a hypervolume gradient
technique is presented (Sec. [3.6).

Chapter [2| and each section in Chapter [3] close with a summary of the key results,
and a discussion on their impact and remaining open problems as conclusions.
The final Chapter [4] recapitulates in a similar way the whole thesis while taking a
broader view.

Nearly all results of this dissertation have already been released in publications I
(co-)authored. References to these papers are marked with a star (e.g. [Beume et al.
(2010)*). Parts of these peer-reviewed publications are reproduced here literally.
For precise referencing and complaisant readability, these parts are indicated by
blue font and the cited original publication is referenced in the beginning of the
respective section. A reference is given at the end of each published theorem, for
example as Beume et al.| (2010)* if the statement has not been changed and by (cf.
Beume et al.| (2010)*) in case the result has been altered or extended. For figures
and tables, the component’s name in blue font (e.g. Fig. 2.10) indicates that it has
been adopted unchanged.

Throughout this thesis the term hypervolume replaces the deprecated synonym
S-metric.

For easier readability, vectors are only marked as transposed in case of vector
calculations where it is important whether a vector is a row vector or a column
vector. A column vector is denoted by x and its transposed row vector by x'. The
terms vector or point are used synonymously. Likewise, we consequently distinguish
between sets and multisets in formal statements but often use the term set in
descriptive text for convenience. The abbreviations EA and EMOA shall represent
the singular as well as the plural form.
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1 Introduction

The fundamental concepts of the discipline are presented on a basic level amendable
to non-familiar readers, referring to subsequent chapters where the knowledge is re-
quired and further literature. The basic definitions of multiobjective optimization
follow (Sec. , next to the ideas of how to measure the quality of approximations
of the optimal set (Sec. . Evolutionary algorithms are introduced as suitable
optimizers for multiobjective optimization (Sec. . In Section we distin-
guish the two computation models used in this work, and describe our approach of
experimental test scenarios in Section

1.1 Multiobjective Optimization

Multiobjective or multicriteria optimization can be considered as a canonical ap-
proach to solve real-world problems. As experienced in every day life, a solution to
a problem shall not just be optimized regarding one goal but fulfill several demands.
Two main approaches can be distinguished, namely the a priori and the a posteri-
ort approaches. The a priori techniques (cf. Miettinen| (1999)) require a weighting
of the problem’s objectives prior to the optimization. Summing up the weighted
objectives results in a single-objective function with the desired solution as the
optimum. Thereby, user preferences can be respected by the optimizer in order to
generate a solution with the favored properties. A drawback is that it is usually
hard for the user to express her wishes in weights, and to specify the intended ratio
before knowing which compromises are possible among objectives. Moreover, not
all compromises of objectives are reachable with the described weighting.
Contrarily, a posteriori approaches (cf. Miettinen| (1999))) like the vector or Pareto
optimization' consider all objectives to be of equal importance, thus all compromise
solutions that cannot be improved in one objective without worsening in another
are considered to be optimal, thus resulting in a set of optimal solutions. The opti-
mizer approximates the optimal set, so that the user (or decision maker) can decide
based on this knowledge which compromise solution fits best to her interests. This
approach is used in this thesis, where we deal with the generation of the approxi-
mation but not with the decision of a solution. The basic concepts are detailed in
the following definitions. For a comprehensive introduction and overview, see e.g.
Miettinen| (1999), Deb (2001)), |Coello Coello et al.| (2002)), or [Ehrgott (2005]).

INote that the nomenclature in the literature is ambiguous: it is also common to treat multi-
objective optimization and Pareto optimization as synonyms.

13



1 Introduction

The following definitions allow us to distinguish between sets and multisets where
necessary.

Definition 1.1 Let A = {{a™M,a®,... a™}} denote a multiset of size m, so A
may contain copies, i.e., a®)? = a9 is possible with i # j and i,j € {1,...,m}, or
otherwise A is a set.

Definition 1.2 The operator set denotes the transformation of a multiset into a
set by removing copies, while keeping one element of each subset of equal elements.

We consider unconstrained multiobjective optimization problems in real-valued
spaces.

Definition 1.3 An unconstrained multiobjective optimization problem is defined
as min f(x), with [ : B" = B, f(x) = (A(0)..... fulx)). f; : R* = Ryi €
xecR™

{1,...,n}.
Let the domain of f be denoted as S C R™ and the co-domain be the multiset
7 € M(R?) with elements from R?.

We notate optimization problems as minimization problems. They can be trans-
ferred into equivalent maximization problems since m]iRn f(x)=— m%x{— f(x)}.
XE n Xe n

The following relations among vectors are applied to relate solutions of multiob-
jective problems to each other in order to compare their quality.

Definition 1.4 Let a,b € R? denote two d-dimensional points (or vectors).

1. a % b, a weakly dominates b : <=
VZE{l,,d}algbz

2. a < b, a dominates b : <=
a<banda#b,ie, i e{l,....d}:a; <l

3. a << b, a strictly dominates b : <=
Vi € {1,...,d}:ai < b

4. a||b, a and b are incomparable: <=
neither a < b nor b < a.

5. a=<b <= b > a, analogously for >, =~

6. aAb < a=Dbisnot true, i.e., b < a or a|b.
a4Ab <= a<bisnot true, i.e., a=b orb =< a or a|b.
a—<<kb <= a << bisnot true, i.e., a<b orb =<a ora|b.
affb <= a|b is not true, i.e., a<b orb < a.

14



1.1 Multiobjective Optimization

Lemma 1.5 A hierarchy of dominance relations exists by definition:
a<<b = a<b = a=b.

The minimal or best elements regarding the Pareto dominance are considered anent
to an optimization problem or within sets or multisets.

Definition 1.6 The minimal elements of a multiobjective optimization problem
f S — Z regarding the partial order induced by the Pareto dominance are called

Pareto-optimal. Formally, we denote the multiset of optima in the objective space
as PF(f) C Z as the Pareto front

PF(fy={{veZ|PacZ:a=<v}},

and the set of optimizers PS(f) C S in the search space as the Pareto set

PS(f)={xeS|fyeS: fly) < fx)}={xeS]|f(x)ePF(f)}

Definition 1.7 A set A C R? of points that are pairwisely incomparable regarding
the < relation, formally Va,b € A :a £ b and b 4 a, is called a non-dominated
set or an antichain regarding <.

A non-dominated multiset can be generated from an arbitrary multiset B C R? by
removing dominated elements:

ndms(B) = {{b € B | flac B:a < b}},
and a non-dominated set can be generated by additionally removing copies:
nds(B) =set{{b € B | fac B:a<b}}.

Note that the term non-dominated set is commonly used in literature assuming that
copies in sets are unlikely in continuous spaces, whereas the term non-dominated
multiset is newly introduced here.

The nadir point of a set constitutes of the worst coordinate values in the set,
respectively in each dimension. It describes the smallest upper bound of a set, in
the sense that it is the point which is weakly dominated by each point of the set
and there is no point dominating this one with this property. Analogously the ideal
point is the largest lower bound of a multiset, i.e., the point that weakly dominates
each element of the multiset. The basic definitions above are illustrated in Fig. [I.1]

Definition 1.8 The nadir point nad of a multiset A € M(R?) describes the small-
est upper bound of the multiset:

nad(A) := (z1,...,2q), with z; = max{a; | a€ A},i € {1,...,d}.

15



1 Introduction

fa fo

nad(M)

incomparable

ide(M)

better incomparable

fi fi

Fig. 1.1: Left: Dominance relation of a point in a 2-dimensional space. Right: An example
of a Pareto front (blue line), an approximating set M (black points), and its nadir
and ideal point.

Definition 1.9 The ideal point ide of a multiset A € M(R?) describes the largest
lower bound of the multiset:

ide(A) := (z1,...,24), with z; = min{a; | a € A},i e {1,...,d}.

Next, the dominance relation among vectors is transferred to sets or multisets of
vectors. The relations < and << are defined counter-intuitively in literature, so
they are omitted here as we do not need them.

Definition 1.10 Let A, B denote two non-empty finite multisets with elements
from R

1. A X B, A weakly dominates B : <=
Vbe B:da€ A:a=<b.

2. A || B, A and B are incomparable : <>
neither A < B nor B < A.

It follows a classification of relations.

Definition 1.11 A binary relation R is a preorder (or quasi-order) over a set M,
if Va,b,c € M it fulfills:

1. aRa (reflexivity)

2.aRb ANbRe¢ = aRc (transitivity)

Definition 1.12 A binary relation R is a partial order (or antisymmetric preorder)
over a set M, if it is a preorder over M and Va,b € M it fulfills:

aRb ANbRa = a=0b (antisymmetry)

16



1.1 Multiobjective Optimization

Definition 1.13 A binary relation R is a strict (or irreflexive) partial order over
a set M, if Va,b,c € M it fulfills transitivity as in Def. and:

1. a Ra (irreflexivity)
2 aRb = bRa (asymmetry)

With the definitions above, we characterize the dominance relations among vectors,
sets, or multisets to gain a deeper understanding of the relations.

Corollary 1.14 The relation < is a partial order over R.
Proof. Va,b,c € R? hold with i € {1,...,d}:
1. Reflexivity: a < a, since Vi : a; < a;.
2. Transitivity: a <bAb <c=a=<c,sinceVi:a; < b; \Nb; <c¢; = a; <¢;.

3. Antisymmetry: a<bAb <a=a=b,asVi:a; <b;A\Nb; < a; = a; =b;.
]

Corollary 1.15 The relations < or << form a strict (or irreflexive) partial order
over R%.

Proof. Transitivity holds as in Cor. [L.142] Va € R? hold with i € {1,...,d}:

1. Irreflexivity: a £ a and a <X a.
Since % : a; < a;, neither a < a nor a << a hold.

2. Asymmetry: a<b=Db Aaanda<<b=Db<Xa.
Since a < b with 3¢ : a; < b; holds, so b < a with Vi : b; < a; is not true.
Analogously, since a << b, with Vi : a; < b; holds, so b << a with Vi : b; < a;
is not true. O]

Corollary 1.16 The relation < is a preorder over subsets from R as well as over
M(R?), the set of all multisets with elements from R?, but over both not a partial
order.

Proof. 1. and 2. are proved for multisets, holding as well for sets, whereas the
negative property 3. is proved for sets, holding as well for multisets. V multisets
A B,C € M(R?) hold with i € {1,...,d}:

1. Reflexivity: A < A, sinceVae A:da€ A:a<a.

2. Transitivity: AL BAB<C=A<XC.
It holdsVbe B:dae A:a<b,soVi:a; <b,andVce C:dbe B:b <
c,soVi:b; <g¢. ItfollowsVee (C:dace A:a<c,s0Vi:a; <g;.
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3. No antisymmetry: A< BAB=<A % A=B.
Antisymmetry does not hold for < on sets including dominated points. Let
A,B C R? with B= AU {a} and A < {a}, a ¢ A. Then mutually weak
dominance holds while B contains an additional dominated point. As an ad-
ditional argument, antisymmetry does not hold for < on multisets containing
copies. Let A, B € M(R?) with B = AU {a} and a € A. Then mutually
weak dominance holds while the sets are not equal. O]

Corollary 1.17 The relation = is a partial order over the non-dominated sets of

M(R).

Proof. The proofs of reflexivity and transitivity are analogous to Cor. [L.16] V
multisets A, B,C € M(R?), thus nds(A),nds(B),nds(C) C R? hold with i €

{1,...,d}:
1. Reflexivity: nds(A) < nds(A).
2. Transitivity: nds(A) <X nds(B) Ands(B) 2 nds(C) = nds(A) < nds(C).

3. Antisymm.: nds(A) < nds(B) Ands(B) = nds(A) = nds(A) = nds(B).
Proof by contradiction: Assume nds(A) = nds(B) does not hold. Then
da € A with a ¢ B. Since nds(B) = nds(A) there db € B : b < a with
a # b. Then, since nds(A) < nds(B) there 3¢ € A : ¢ < b. Due to
transitivity with Vi : ¢; < b; < a; and a # c as a # b, it follows ¢ < a. This
contradicts with the definition of nds(A). O

1.2 Quality Assessment

To evaluate the quality of an approximation to Pareto-optimal points, the ap-
proaching is normally considered in the objective space towards the Pareto front.
Approximating the Pareto set is an even more ambitious aim as one point in the
objective space may have multiple preimages in the search space so that the Pareto
set is larger. It is commonly agreed that the Pareto front approximation is the pri-
mary goal, although the Pareto set is as well desired, e.g. to have several different
solutions with equal quality to choose from.

The definitions in Section allow to relate approximations to each other, e.g. a set
that dominates another is a better approximation. Yet, the typical case is that the
approximations are incomparable. Since the Pareto dominance is not a total order,
not all points are comparable. A point located in the middle of a 2-dimensional
objective space dominates 1/4 of it, is dominated by 1/4, and is incomparable to
1/2 of the objective space. So it is comparable with 1/2 of the space, and this
fraction decreases exponentially with increasing dimension of the objective space
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1.2 Quality Assessment

to 2791 in d dimensions. As the comparability of sets requires the comparability
of their elements, approximations are typically incomparable so that the concept
of Pareto dominance is insufficient. Yet a quality assessment is desired to evaluate
the performance of optimizers. So an ordering is established artificially with the
help of quality measures or indicators based on quality aspects additional to the
dominance.

A quality measure or indicator is a mapping of a multiset with elements from R?
to R, a definition that leaves arbitrary freedom which quality aspect to represent.
The following informal properties are esirable and often demanded from quality
indicators, cf. (Deb|, 2001, Ch. 8.1).

Axioms 1.18 A quality measure or indicator o : M(R?) — R shall respect the
following aspects.

1. Convergence: The approximation shall minimize the distance to the Pareto
front.

2. Diversity: The approximation shall be spread along the whole Pareto front
and be well distributed.

3. Cardinality: The size of the approximating set shall be appropriate.

The last point is discussed contrarily. Of course a larger set approximates an
infinitely large set better than a smaller. Despite that, it is agreed that the aim of
an optimizer is not to generate the whole Pareto front because of too much required
resources, but to determine a good representing set.

The indicators we consider are so-called unary measures as they evaluate exactly
one set of points. There also exist measures to evaluate two or more sets relative
to each other. This has the drawback that the results are not comparable with
sets that have not been invoked in that comparison. So, unary measures are more
suitable for benchmarks as they enable to comprise earlier or supplementary studies.

The total order the quality measures establish shall be conform with the Pareto
dominance relations as far as possible. This demand is specified with the terms
of completeness and compatibility regarding a relation, cf. |Zitzler et al. (2003).
Concretely, for a comparable pair of sets with e.g. A < B and B £ A the quality
measure shall evaluate the pair such that A is not inferior to B.

Definition 1.19 Let A, B € M(R?) denote finite multisets. A quality measure
a: A — R is complete regarding a relation R C A x B if: VA,B: AR B = «a(A)
better than a(B).

The total order induced by the measure shall not contradict with the partial order
of the relation. The better set regarding the measure shall as well be better or at
least not worse regarding the relation.
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Definition 1.20 Let A, B € M(R?) denote finite multisets. A quality measure
a: A — R is compatible regarding a relation R C Ax B if: VA,B: AR B <= «a(A)
better than a(B). It is weakly compatible regarding R if: YA, B : AR B < a(A)
not worse than a(B).

f21
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Fig. 1.2: Left: Illustration of the 2-dimensional hypervolume (gray area) of a set (black
points), bounded by the reference point r. Right: Hypervolume illustration in a
3-objective space.

Several quality indicators exist and are in usage. Many concentrate either mainly
on the diversity or on the convergence. A challenge is to develop measures that
evaluate the quality without requiring the knowledge of the Pareto front. Typically
convergence measures calculate the distance of the approximation to the Pareto
front and are therefore only applicable for test problems where the user is equipped
with this knowledge.

The hypervolume (or S-metric) by Zitzler and Thiele| (1998)) is the most significant
and accepted quality measure in multiobjective research. It measures the size
of the space containing points that are dominated by at least one member of the
considered set, and is bounded by a reference point (cf. Fig.[1.2). The hypervolume
respects all aspects of Axioms[I.18] does not require knowledge of the Pareto front,
and is the only known measure which fulfills completeness and compatibility w.r. t.
the Pareto dominance relations in the best possible way. A formal definition and
detailed properties are given in Chapter [2| followed by the author’s contributions.

It is recommended to use several indicators to evaluate the quality of approximation
in order to emphasize different aspects. Further indicators used in our experimental
analyses are described in Chapter 3l A comprehensive introduction to quality
indicators can be found in |Knowles et al.| (2006)), and an in-depth overview of
quality indicators and their properties is given in |Zitzler et al.| (2003) and |Zitzler
et al.| (2008a).
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1.3 Evolutionary Algorithms

1.3 Evolutionary Algorithms

FEvolutionary Algorithms (EA) can be classified according to several methodolo-
gies. EA are randomized direct search meta-heuristics for black-box optimization.
We explain the terms in an informal way to just sketch the concepts. Search heuris-
tics (see e.g. [Schwefel| (1995)) do not algorithmically calculate an optimal solution
but iteratively try valid solutions of unknown quality in order to stepwisely pro-
ceed to high quality solutions of the optimization problem. The search space is
formally defined so that arbitrary solutions can be generated. Many approaches
require information on the gradient of the problem to decide about promising search
directions. Contrarily, the term ‘direct’ says that no information about the prob-
lem is required except for the function values obtained by point-wise evaluation.
This concept suggest these methods for complex problem with unknown proper-
ties. Black-box optimization as well expresses this by assuming that nothing is
known about the problem so that information can only be gained by executing the
black-box with a solution to evaluate the solutions quality. The term ‘heuristic’
says that although thorough strategies are performed, no guaranty of a certain
resulting quality of the solutions can be given as this demands assumptions on the
problem class. The term ‘meta’ is an addition to express that the algorithms are
not limited to a certain problem class but can optimize arbitrary problems. It as
well alludes that the methods may conjoin several different techniques, which is
also termed ‘hybrid metaheuristic’.

Evolutionary algorithms moreover belong to methods subsumed under the umbrella
term Computational Intelligence. These have in common to be inspired by natural
archetypes, and also include fuzzy systems, artificial neural networks, swarm intel-
ligence, and artificial immune systems (see e.g. [Engelbrecht| (2007)); Konar| (2005)
for an overview). Evolutionary algorithms are inspired by the Darwinian notion of
the evolution as a process of reproduction and selection by survival of the fittest.
The strongest individuals adapted best to the environment shall pass their positive
characteristics to the next generation by their genetic information so that a species
is improved by evolution. Modern EA still base on the concept of iterative im-
provements but do not try to imitate biological processes. The nature is used as an
valuable source of inspiration, whereas the techniques are then embossed according
to the latest knowledge of computer science, mathematics, and statistics.

Historically, evolutionary algorithms had different names due to different commu-
nities. Nowadays, evolutionary algorithm (EA) or evolutionary computing (EC)
are generic terms subsuming the former directions of genetic algorithms (GA) evo-
lutionary strategies (ES) as well as estimation of distributions algorithms (EDA),
evolutionary programming (EP), and genetic programming (GP), whereas the three
latter differ more in their concepts and are also considered as independent fields.
An introduction and overview can be found in Back et al.| (1997); [Eiben and Smith
(2007) and recent theoretical results in |Auger and Doerr| (2011)).
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(recombination/crossover,
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Fig. 1.3: Operators and evolution cycle of an EA.

Basic Principles

The main components and progression of EA are as follows. The search space has
to be encoded such that solutions consist of a vector of parameter values, which is
called the representation of solutions. The parameter vector consists of so-called
decision variables and is also termed genome according to the biological paradigm.
It is, besides the solutions quality and possibly other attributes, stored in a solution
or individual. The optimization starts with the initialization of a set of individuals,
denoted as population, which is maintained and sought to be optimized throughout
the run of the algorithm (cf. Fig. , Alg. . The population is mostly initialized
uniformly at random in the given search space. The individuals are then evaluated
to determine their solution quality or fitness by a black-box solver.

Then a loop or generation is repeated: From the population, individuals are se-
lected to become parents of new individuals, a process called parent or mating
selection, which is often performed uniformly at random or in a tournament modus
where individuals are compared pairwise according to their fitness until 'winners’
are determined. New individuals or offspring are generated from the parents by
probabilistic variation. Recombination or crossover operators combine the infor-
mation of typically two individuals to create a new one. Afterwards mutation
operators slightly alter the offspring. Crossover is optional, alternatively a copy of
a parent is generated and then only changed by mutation.

Having generated and evaluated an offspring population, a subset of the current
individuals is discarded to keep only the most promising ones, based on their ob-
jective or fitness values. If we discard the whole preceding population, this is called
comma selection, denoted by (u, A) for a population of size p and A offspring per
generation. A so-called plus selection filters the best individuals from both old
and offspring population, denoted as (1 + A). In both concepts the population is
resized to p individuals in each generation. After the selection of the subsequent
population, the generation is completed. The evolutionary loop has no defined end
since the algorithm is not able to verify a solution as optimal. Thus, an aborting
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1.3 Evolutionary Algorithms

Algorithm 1.1: (u+1)-EA or (p+1)-EMOA
choose y individuals from R™ for initial population P ¢ + 0

evaluate population PO
repeat
select 2 parents from P®

mutate offspring Y

evaluate offspring Y'*)

select worst individual Z® from P® Uy ®
update population to P® «+ PO yy®\ z®
10 t+—t+1

11 until termination criterion fulfilled

1
2
3
4
5 create offspring Y¥) by recombination of parents
6
7
8
9

condition has to be defined by the user, typically according to resource limitation
or the witnessed progress.

Into any component user expertise (if available) may be included in the optimization
process to bias the random decisions to known good directions. Seemingly every
day, new EA appear, however the state-of-the EA for single-objective optimization
are the variants of the CMA-ES by Hansen| (2006)), Hansen and Ostermeier| (2001)),
and Hansen et al.| (2003).

EA for Multiobjective Optimization

FEvolutionary Multiobjective Optimization Algorithms (EMOA), also called Multi-
objective Evolutionary Algorithms (MOEA), are perfectly qualified for the task of
generating an approximation of the Pareto front due to the population concept of
optimizing a set of points. In principle, the operators of EA for single-objective
optimization can also be used for multiobjective optimization, except for the selec-
tion. So the example algorithm in Alg. is an EA as well as an EMOA. There is
no necessary difference for the variation or other operators considering the search
space only, whereas of course dedicated operators may be more effective. Only the
selection unavoidably has to deal with the multi-dimensional objective space. Here
again, the common concepts—Iike tournament selection, plus or comma selection
etc.—for selecting among the best individuals could be adopted. Yet the problem
is the typical absence of a total order among the individuals, so that there is no
sorting the selection can base on. So, for EMOA—and as well in modern EA—the
fitness value does not simply equate the objective function values, as the fitness in-
corporates additional information relative to the current population. Appropriate
totally ordered fitness values the selection can base on are in EMOA generated as
follows. Many modern EMOA have a two-stage selection process: Firstly, the indi-
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viduals are classified as far as possible regarding the dominance or measures based
upon it. Examples are non-dominated sorting which performs a kind of ranking
based on the transitivity of the dominance, other measures e.g. count the number
of dominating individuals. Secondly, an additional measure is applied to enforce
an order among the individuals that are still incomparable after the first stage. To
this end, diversity measures or quality indicators are used.

The indicator-based EMOA use a quality indicator for the selection at least as a
second stage measure. The SMS-EMOA follows this principle by first performing
non-dominated sorting on the population and one offspring, and then for the worst
subset, the hypervolume is determined and the individual with the least contribu-
tion to the hypervolume is denoted as the worst one and is discarded.

The clearly most popular EMOA, NSGA-IT by Deb et al| (2002a), is nowadays
outdated and no longer recommended, yet it still serves as a reference optimizer in
benchmarks, next to the classic algorithm SPEA2 by Zitzler et al.|(2002). A modern
EMOA is e.g. e MOEA by Deb et al.| (2005a), and state-of-the-art EMOA are GDE3
by [Kukkonen and Lampinen (2007)), or MSOPS and MSOPS-II by [Hughes (2003,
2007)), as well as the hypervolume-based EMOA, with IBEA by |[Zitzler and Kiinzli
(2004), MO-CMA-ES by [Igel et al.| (2007); [Vofs et al. (2010]), and SMS-EMOA by
Beume et al.| (2007)* being the most popular algorithms.

Besides the classic introductions by [Deb (2001) or (Coello Coello et al.| (2002), an
overview of modern EMOA and related techniques can be found in [Abraham and
Goldberg| (2005), Knowles et al. (2007, Branke et al. (2008), and recent theoretical
insights in Brockhoff| (2010b). The EMOA invoked in this thesis are described in
Chapter [3] especially detailing the SMS-EMOA and its characteristics.

1.4 Computation Models

Standard Algorithmic Model

The computation model we consider for the hypervolume calculation in Chapter
is the standard model for algorithmic complexity, i.e., also for computational ge-
ometry, which is the context we consider the hypervolume in. The calculation time
is measured as the number of elementary calculation steps. All steps are assumed
to have equal costs (uniform cost model) and we do neither consider space nor
resources for communication in distributed systems. An algorithm is considered as
a bounded-degree algebraic decision tree that is traversed depending on the input.
For a more in-depth exposition, see e.g. Preparata and Shamos (1988, Sec. 1.4).
Runtimes are given w.r.t. the size of a set of vectors m, without the dimension of
the vectors d, assuming d is a constant, i.e., d = O(1) w.r.t. m.

This model is as well used to express the computational resources of an evolutionary
algorithm per generation without counting the function evaluations.
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Model for Black-Box Optimization

For black-box optimization, a dedicated complexity measure, the black-box complex-
ity, has been developed to express optimization times required to solve a problem
class by means of a randomized direct search heuristic. It is assumed that the
operations of an algorithm are neglectable compared to the time required for a
function evaluation of a real-world problem. Hence, the black-box complexity only
gives the number of function evaluations until an optimal function value is found.
See Wegener| (2005, Ch. 9.) for exact definitions and a more in-depth exposition.

In theory on evolutionary algorithms for single-objective optimization, this mea-
sure is common practice. As usually, upper bounds for the complexity of a problem
are gained by algorithms that solve the problem in that time. It depends on the
problem and the optimizer how sound the measure actually is. In multiobjec-
tive optimization, the black-box complexity is not necessarily suitable since the
calculations of an evolutionary algorithm may be more demanding, e.g. due to
hypervolume calculation, so that their resources only fall behind time-consuming
function evaluations.

In Chapter |3| we state the runtime of algorithms as resources per generation w.r.t.
the standard algorithmic model, and optimization times in black-box complexity.

1.5 Experimental Analyses

Experimental Studies

Experimental studies are a research discipline with a documented tradition of hun-
dreds of years, and are more or less the only approach in natural sciences. It could
be surmised that computer experiments as not necessary due to the mathematical-
based system and algorithms. However, the resulting random processes are far too
complex to calculate exactly what is happening. As current theoretical tools are
insufficient to answer many relevant research questions, experiments are the only
ways to gain insights. Moreover, they are also used to validate that mathematically
calculated facts can also be observed when actually running the algorithms, which
is not evidently since theoretical analyses as well make assumptions to abstract
from reality.

In this work we perform experiments in order to experience how well the theoretical
bound of the runtime fits with the real runtime of the hypervolume algorithms in
Section [2.3.2 When studying the EMOA in Chapter [3] rigorous analyses are per-
formed as far as possible, but the processes are often too complex for current tools,
so that experimental studies are performed instead. An overview of state-of-the-art
methods of experimental analyses is given in Bartz-Beielstein et al.| (2010a). For
the documentation of experiments, we mainly follow |Preuss| (2007), which formu-
lates the application of common guidelines of experiments in natural sciences to
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computer experiments in the area of evolutionary computation. Tests on statistical
significance are performed when it seems necessary in order to validate the results.

Academic Test Problems

To benchmark and study certain aspects of EMOA, academic test problems are
used. These have the advantage that the problem is well understood and the
optima are known as it has been designed clearly structured. They shall represent
typical characteristics of real-world problems paradigmatically. In our studies, the
test set is respectively chosen according to the posed research question, and with
popular test problems in order to establish comparability with similar studies. Note
that all problem functions are real-valued and to be minimized.

The ZDT family by |Zitzler et al| (2000) comprises 2-objective continuous func-
tions, the discrete ZDT5 is excluded here like in most studies from literature. The
Pareto front of ZDT1 is convex, ZDT2’s is concave, ZDT3’s consists of five convex
parts. ZDT4 has the same Pareto front as ZDT1 but the functions are multimodal.
The Pareto front of ZDT6 is a subset of ZDT2’s and the points are distributed
asymmetrically. The Pareto set is equal for all ZDT function, with all except the
first decision variable equaling zero. The problem family is often used for an initial
benchmark of a new optimizer; we apply it in Sections [3.3H3.6]

The DTLZ function family by |Deb et al| (2002b)) is another popular problem set
with scalable number of objectives. Like the ZDT problems, they contain multi-
modal problems based on sine and cosine functions. DTLZ1 has a linear Pareto
front (e.g. a plane in case of three objectives) and DTLZ2 and DTLZ3 have the
same convex Pareto front, more precisely a section of a hypersphere. The runtime
of hypervolume algorithms is benchmarked on subsets of the linear and convex
DTLZ Pareto fronts (Section [2.3.2). To study and benchmark EMOA, the DTLZ
problems and variations of it are applied in Sections [3.3H3.5|

Moreover, other test problems as well as a real-world problem are used in our
studies, specified in the respective sections, including the test suite of the CEC
2007 competition, organized by [Huang et al.| (2007)), for the study in Section .

Parameter Handling

Undoubtedly, different optimizers perform different on certain problem classes.
Since meta-heuristics, such as EA, are equipped with several parameters that allow
to change their behavior, an EA or EMOA can be seen as a plurality of algorithms
and the choice of parameter values deserves a closer look.

Two major forms of parameter settings are to be distinguished: parameter control
and parameter tuning. Parameter control deals with the handling of parameter
values within the EA during its execution. The main concepts are static or adaptive
operation, thereby especially dynamic over time or self-adaptive subjected to the
evolution process (see Michalewicz et al. (2007)) for an overview).

26



1.5 Experimental Analyses

Parameter tuning is the process of finding good values for the external parameters
that are set before the algorithm starts (see |Bartz-Beielstein et al.| (2010a)) for an
overview of tuning methods). These may function as the initial values of internal
adaptive parameter control methods. Finding the best parameterized EA for a
problem is an optimization problem by itself. Yet, the goal of the optimization
process is not obvious and naturally a multiobjective problem, while demands are
e.g. fast progress and convergence to a global optimum. Further requirements arise
from the stochasticity of EA, e.g. low variance and high reliability of the results’
qualities. We deal with parameter tuning in Section [3.5]
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2 Hypervolume Calculation

Calculating the dominated hypervolume is a core problem in multi-objective opti-
mization as it is the standard quality measure to evaluate approximations of the
Pareto front. After an overview of the problem’s properties, we deal with the com-
putational resources required for the hypervolume calculation. Taking the view
of computational geometry, the best known lower bound is proved with tools of
complexity theory (Sec. [2.2] Beume et al| (2009a)*). By algorithm engineering,
we derive a simple algorithm realizing a hardly worse upper bound than the best
known one (Sec. [2.3] [Beume| (2009)*).

2.1 Problem Properties

The hypervolume is a unary quality measure that maps a set to a scalar value.
This way, an arbitrary number of sets can be compared using the order induced by
the hypervolume values. To simplify matters, we consider one or two sets in the
following.

After providing basic definitions, we survey properties in simple notation with
formal proofs. An emphasis is the relation of the preorder of the dominance relation
and the total order according to the hypervolume. The choice of the reference point
and its influence are discussed. Results for the distribution of points within a set
of maximal hypervolume are presented detailing our contribution for linear Pareto
fronts. We give an overview of exact as well as of approximation algorithms.

Basic Definitions

The dominated hypervolume describes the size of the space dominated by a set—
or more general a multiset—of points. It has first been suggested by |Zitzler and
Thiele| (1998) for performance assessment.

Definition 2.1 Let M = {{v(V), v® ... v(™}l € M(R?),d>2, m €N be a fi-
nite multiset, and r € R? indicate the reference point. The dominated hypervolume
(or S-metric) is defined as the quantity

H(M,r):=Leb({ueR?!|Ive M:v=<u=r})

= Leb (6[v(i),r]) : (2.1)

=1
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Leb denotes the Lebesgue measure in RY. The d-dimensional interval [v(?, r] de-
scribes the hypercuboid spanned by v and r, indicating the space dominated by
v and bounded by r. In the following, we denote Hy(M,r) := {u € R? | Iv €
M:v<u=r}

An illustration of the 2-dimensional dominated hypervolume is given in Fig.
(left). For convenience, we use the popular term hypervolume in the following for
dominated hypervolume. The older term S-metric is misleading as the measure is
not a metric in the mathematical sense. In the context of multiobjective optimiza-
tion, the hypervolume is sought to be maximized.

f2 A f2 A

v

v@

+v®

Ny S

v

> f1 > f1

Fig. 2.1: Left: Illustration of the 2-dimensional hypervolume (gray area) of a set (black
points), bounded by the reference point r. The axes f1, f2 indicate our notion of
the 2-dimensional space as the image of a multiobjective problem. Right: The
hypervolume contribution of each point is indicated in light gray.

More general definitions of the hypervolume exist, which we do not use here but
briefly mention. Instead of one reference point, a reference set can be used to bound
the dominated space (cf. Zitzler et al. (2010)). Zitzler et al. (2007) introduced the
weighted hypervolume by using a weight distribution to emphasize certain regions
of the objective space and thereby realize user preferences. They showed that
the weighted hypervolume indicator has the same properties w.r.t. the dominance
relation as the original one.

In order to optimize the composition of a set, it is desirable to quantify the value of
a single point within that set. To this end, we define the hypervolume contribution
of a point to a set as the hypervolume that is exclusively dominated by that single
point and thus gets lost when the point is excluded from the set (Fig. right).
Points with higher hypervolume contribution are preferred over others in the set.
Note that the hypervolume contribution is typically calculated w.r.t. a set of non-
dominated points. Dominated points or copies in multisets have a contribution of
zero but they may reduce the contribution of non-dominated points by sharing a
region with them which is then not associated as their exclusive contribution.
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Definition 2.2 The hypervolume contribution of the point v € M to the hyper-
volume of the multiset M € M(R?) is defined as

H(v,M,r) = H(M,r) — HM\ {v},1).

Throughout this section it becomes obvious that the hypervolume respects the Ax-
ioms[I.18 Points closer to the Pareto front have a higher hypervolume, the hyper-
volume of a set increases with additional non-dominated points, so that spreading
along the whole Pareto front gets rewarded. Next, we present basic properties of
the hypervolume.

Corollary 2.3 Let A, B € M(R?) be finite multisets. Then, VA, B,V¥v € R Vr €
R? holds:

1. HAr)=0 < Aac A:a<<r

(
(

2. HAr)>0 < JacA:a<<r
3. Hv,Ar)=0 < v<Krordac A:a=<v
4 H(v,Ar)>0 < v<<randflac A:a=<v

A

Sets with higher hypervolume are preferred over other sets.

6. Points with higher hypervolume contribution are preferred over others in the
set.

7. Let M be a set of elements from the co-domain Z C R? of a multiobjec-
tive optimization problem f : R® — R?. The hypervolume of the set M is
maximal among the subsets of Z iff it contains the Pareto front of f.

Proof. The hypervolume as well as the hypervolume contribution are either positive
or zero; negative values are not defined.

1., 2.: The hypervolume is positive iff there is at least one point that strictly
dominates the reference point. This implies that the hypercuboid spanned by the
point and the reference point is full-dimensional. Weaker forms of dominance are
not sufficient as they allow equal coordinate values of both points which leads to a
hypervolume of zero.

3., 4.: The hypervolume contribution of a point v is positive iff v strictly dominates
the reference point (for the same reason as in .), and v is not weakly dominated
by any point of A. For all points in or on the boundary of the space dominated by
A holds that they are at least weakly dominated by one point of A. Thus v indeed
lies outside this area, so there is a portion of hypervolume dominated by v but not
dominated by any other point in A, and it is full-dimensional. Formally, the point
can be worsened in each dimension by € > 0 (sufficiently small) to v’'. For v’ holds
v << v/ =<<r,and fa € A,a # v :a < v'. The hypervolume contribution of v is
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the Lebesgue measure of the set of these v'.

Otherwise, the hypervolume contribution is zero )

5., 6.: Regarding the hypervolume and the hypervolume contribution higher values
are better.

7.: See [Fleischer| (2003, Theorem 1.) for a proof. The fact also becomes evident in
the proof of Theorem [2.4]4] ]

Ordering according to the Hypervolume

As a quality measure, the hypervolume creates a total order among sets which are
only preordered regarding the Pareto dominance relation. The implications below
directly follow from the fact that the dominated space of A includes B, if A < B.
Intuitively, the implications mean that the total order induced by the hypervolume
does not contradict with the preorder of the dominance relation, and whenever
sets are comparable regarding the dominance relation, the hypervolume indicates
this. The following collection of characteristics is partly redundant in the sense
that some observation follow from others, yet it seems worthwhile to present facts
from different points of view.

Theorem 2.4 Let the dominance relation =< induce a preorder and the hyper-

volume H (-,r) induce a total order among the finite non-empty multisets A, B €
M(R?). Then, VA, B,Vb € R4 ¥r € R? holds:

1. A=B = H(A;r)=H(B,r)

2. A<B = H(Ar)>H(B,r)

3. A=<{b} = H(AU{b},r)=H(A,r)

4. AL {b}andb<<r = H(AU{b},r)> H(Ar)
5. For all sets A, B of mutually incomparable points:

A=<Band A#B = Vr:(nad(AUB)=<<r): H(A,r)> H(B,r)
6. A<=Band BAA = Vr:(nad(AUB) <<r): H(Ar)> H(B,r)
7.B4A e, (ASBAA#£B)VAIB <« 3JreR':H(Ar) > H(B,1)
8 AXBand BAA <« Vr:(3ve AUB:v =<<r):H(Ar)> H(B,r)

Proof. 1.: Equal sets of course yield equal hypervolume values, as obvious by
replacing A by B, whereas this does not hold the other way round.

2.: A X Bimplies Vb € B : b € Hy(A,r), so H(A,r) cannot be smaller than
H(B,r).

3. The implication says that a dominated point does not add anything to the
hypervolume of a set. The left hand side implies that b either lies inside the
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hypervolume of A (b € H (A,r)), or b is outside such that it does not strictly
dominate the reference point (b <4 r). In both cases, b does not have a positive
contribution to A (cf. Corollary 2.3]3]).

4. A # {b} means that fa € A : a < b. This combined with b << r is the
condition for a positive contribution to a set (cf. Corollary 2.3[4]). Thereby b has
a positive contribution to A U {b} so the hypervolume of this set is larger than
that of A. This property allows for a proof of Corollary 2.3|[7l: The hypervolume
of a set can be improved as long as there is a non-dominated point to include.
Therefore the Pareto front is the set with the maximal hypervolume among all sets
of solutions of a multiobjective problem.

5. A < B implies H(A,r) > H(B,r) (cf.[2). A # B implies Ja € A : a ¢ B.
This a has a positive contribution to A, if Corollary 2.3|4]is fulfilled. This positive
contribution added to the hypervolume of A makes the hypervolume of A indeed
larger than the hypervolume of B. Given the preconditions Corollary [2.34] is
automatically fulfilled, since a is neither a copy, nor dominated within A, and
a << r. With toned down additional precondition, 5. reads:

A < B and nds(A) # nds(B) = Vr with nad(AUB) <<r: H(A,r) > H(B,r).
6. According to the proof of [f], [6] holds when the non-dominated subsets of A and
B are different. This is the case for A < BA B £ A.

7. B <X AimpliesVa € A: Jdb € B: b =< aandso A C HyB,r) causing
H(A,r) < H(B,r) (cf. 2.). This contradicts with the right hand side, so, the
opposite must be true. Since[2] holds for all reference points, it suffices to observe
H(A,r) > H(B,r) for one reference point to conclude a contradiction.

8. If A < B is not true, then db € B : #a € A:a < b. Choose the reference
point such that it is strictly dominated by this b but not by A: r; = b; + ¢ for
i =1,...,d and ¢ > 0 sufficiently small. Then H(B,r) > 0 while H(A,r) = 0.
This contradicts with the right hand side, so the opposite must be true. B < A
implies H(B,r) > H(A,r) due to 2] This contradicts with the right hand side,
hence B £ A holds. O

Zitzler et al| (2003) observed [p| and [7 (with less precise specification of the ref-
erence point), whereas . is named >-completeness, and p-compatibility (cf.
Definition , . In Zitzler et al.| (2008a)), a property resembling . is named
strict monotonicity. |Zitzler et al.| (2010, Th. 3.2) term the hypervolume a refine-
ment of the dominance relation due to a property resembling . (cf. [Zitzler et al.
(2010, Th. 3.1)). They observed [ and [4] (cf. (Zitzler et al| 2010, Th. 3.2)) and
showed that both in tandem imply [5

The hypervolume and its variations are the only unary indicators that feature both
property [5} and [7 (cf. Zitzler et al] (2007)). Implication [7] cannot be stronger as
proved in (Zitzler et al. [2003, Th. 1). Intuitively, it is clear that from a greater
hypervolume value, it cannot be followed that the sets are comparable regarding
the dominance relation. This would erase the case of incomparability and make
the dominance relation a total order, which is obviously not true.
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2 Hypervolume Calculation

The following lemma says that for two points, their ordering regarding the hy-
pervolume is always equivalent to their ordering according to their hypervolume
contribution when combined to a set (cf. Fig.[2.2)). This lemma is used in Section[3.2]
and has been described informally in Beume et al.| (2011)*.

f2 A

> f1

Fig. 2.2: The light gray rectangles depict the hypervolume contribution of the points. The
dark gray area is dominated by both points, so its value added to each contri-
bution results in the absolute hypervolume of each point. The order induced by
both measures is equal.

Lemma 2.5 Let a,b € RY. Then Vd > 2,r € R? with nad(a,b) << r holds:
H(a,{a,b},r)e H(b,{a b} r) < H({a},r)eH({b} r),
with e being the same relation out of {<,>,=}. (Beume et al. (2011)*).

Proof. The hypervolume dominated by two points consists of the points’ con-
tributions and a part dominated by both points (Fig. [2.2)). The hypervolume
of each point is equivalent to its hypervolume contribution plus the hypervol-
ume dominated by both points. Since this value is equal for both points, it
does not affect the order of the points induced by their contributions. Formally,
we distinguish three cases: (i) Let a = b. Then H({a},r) = H({b},r) and
H(a,{a,b},r) = H(b,{a,b},r) =0. (ii) Let a < b. Then H({a},r) > H({b},r)
asb € Hy({a},r) and H(a,{a,b},r) > H(b,{a,b},r) = 0. (iii) Let a||b with a; <
by and as > by. With ¢ := (ry—by)(ra—as), then H({a},r) = (by—ay)(re—az)+q =
H(a,{a,b},r)+qand H({b},r) = (r1—b1)(ay—by)+q = H(b,{a,b},r)+¢. Thus
H({a},r) > H{{b},r) < H(a,{a,b},r) > H(b,{a,b},r), and analogously for
the other relations and vice versa roles of a and b. O

Choice of the Reference Point

The ranking of sets according to the hypervolume allows for their comparison. To
make this comparison fair, it is common practice to choose the same reference point
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2.1 Problem Properties

for all sets, though it is not proven to be the best concept. For incomparable sets
regarding the dominance relation, the ranking due to the hypervolume depends on
the choice of the reference point. An example for two sets with different rankings
depending on the reference point is given in Figure 2.3

f2 A f2 A

e (2

—0
r r® r rM

> f1 > f1

Fig. 2.3: Example for two different ranking of sets, depending on the reference point. The
set on the left is ranked higher regarding "), the set on the right regarding r®.
Both sets have equal hypervolume values regarding r.

The question how the reference point should be chosen is as yet unanswered. |[Auger
et al.| (2009a) calculated for some 2-dimensional functions how the reference point
has to be chosen such that sets of fixed size with a maximal hypervolume include
points on the boundary of the Pareto front. However, the boundary solutions may
or may not be of interest. A common strategy to choose the reference point is to
position it close to the expected nadir point of the sets. If the reference point is in
large distance to the sets, the problem of numerical imprecision increases, and it
may become hard to distinguish the hypervolume values of the sets.

Within the SMS-EMOA, the concept of the adaptive reference point is introduced.
The idea is to ‘neutralize’ the objective that is not bounded by a point within the
set. To this end, the adaptive reference point is chosen such that it consists of the
nadir point added by a vector of ones. Note that points that are the worst ones in
the population regarding an objective function have a difference to the reference
point of exactly 1 w.r.t. that worst objective (Fig. . Note that the ordering of
sets may differ w.r.t. the adaptive reference point compared to a fixed reference
point, just like between two fixed reference points as discussed above.

Definition 2.6 The adaptive reference point of a multiset M € M(R?) is defined
as

r(M):=nad(M)+(1,...,1) jie., Vi€ {1,...,d} : 7y = nad(M); + 1 (2.2)
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f21 r(M)

> f1

Fig. 2.4: lllustration of the adaptive reference point r(M). It differs by 1 from the worst
coordinates of the set M in each dimension.

Distribution of Points

To compare sets of equal cardinality, it is worth knowing the maximal hypervolume
value that can be reached by a fixed number of points located on a certain Pareto
front. Optimal distributions have up to date only been calculated for classes of
2- or 3-dimensional problems, see |Auger et al. (2009a,b, 2010)), Brockhoft (2010a).
Emmerich et al.| (2007)*, [Beume et al.| (2009a))*, |Friedrich et al. (2009), and |Auger
et al| (2009a) showed that for linear Pareto fronts, the optimal distribution are
such that the distance between neighboring points are equal. |Auger et al.| (2009a)
proved the most general result for all linear connected Pareto fronts, covering the
other results. Our proofs are detailed in the following.

Lemma 2.7 The 2-dimensional hypervolume H(A,r) of m points, including (0, q)
and (q,0), on the straight line g(y) = —y + g w.r. t. the reference point r = (q, q)
is maximal if and only if the points are equally spaced. (Beume et al. (2009a)*,
FEmmerich et al.| (2007)*).

Proof. We first present a geometric proof based on Beume et al. (20092, Lemma
1)* and afterwards a proof based on |[Emmerich et al. (2007, Sec. 3)* using analytic
arguments.

(1) We prove the statement by a contradiction. Let us assume a set A with maximal
hypervolume while not all points in A are equally spaced. Then there exist three
consecutive points a, b, c in A, in sorted fi-order, that are not equally spaced, i.e.,
by —ay # ¢; —by. Note that for the purpose of this proof we do not need to actually
find these points; it is sufficient to know that they exist. Without loss of generality,
we have the situation depicted in Fig. (right). The hypervolume contribution
of b is the red rectangle, or (¢; — by) - (ag — by). For all points on the straight
line g(y), the perimeter of the rectangle they span with the origin is constant:
2(y + g(y)) = 2q. Likewise, the perimeter of the rectangle of the hypervolume
contribution of b H(b, A,r) spanned by b and bounded by a,c is constant for
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q\ r= (q7 q)

>

g > 1

Fig. 2.5: The hypervolume of a linear function is maximal if the points are equally spaced,
here with inter-point distance 0. The right excerpt details the approach of the
geometric proof (1).

arbitrary position of b on g(y). For a given perimeter, the area of a rectangle is
maximal if and only if it is a square. This results in the unique optimal position
of b = b* with b7 — a; = ¢; — bj. So, the hypervolume of A with b* instead of b
is larger, i.e., we can move b to b*, making a, b, ¢ equally spaced, while increasing
the hypervolume. This is the desired contradiction. Conversely, we see that for an
equally spaced set of points, every three consecutive points are equally spaced, so
the hypervolume contribution of each point is a square. Again, trying to make any
three consecutive points non-equally spaced results in a decrease of the contribution
of the middle point and the claim follows.

(2) We reformulate the maximization of the hypervolume for the theorem setup as
minimizing the area in between the dominated hypervolume and the straight line
g(y). Let uq,...,u,_1 denote the lengths of the intervals between the first coor-
dinates of the points. The sum of the squares Z:’:ll u? is twice the area we want
to minimize. The constraints Z;Zl u; =1,V : 0 <y, and uypog = 1 — Z:i_lz U;
assure that the points are distributed over the interval [0, ¢| while occupying its

boundaries. In combination, the minimization problem h = 7" *u? 4 (1 —
ZZ’;Q u;)? is yielded. Computing the partial derivatives of h results in % =
2u; —2(1— 37 % ;) where j = 1,...m — 2. Each of these partial derivatives has a
value of zero at u; = ﬁ, N ﬁ and at this point the minimum occurs,
as verified by a positive definite Hessian matrix. Translations back to the original
problem result in u; = ﬁ, ey Uy = ﬁ and U,,_1 = ﬁ Hence, the points

maximizing the hypervolume are equidistant (with two occupying the end points),
and this is the only distribution of point yielding the maximal hypervolume value
for this setup.

O
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. I= (g,9) \ I= (¢,9)
—— ——
1) 1)
N > f1 g > f1

Fig. 2.6: Ilustration of the calculation of the maximal hypervolume for the setup in
Lemma The points are equally spaced with inter-point distance § =

q/(m —1). The calculation is given in equation (2.3)) (left) and (2.4) (right).

The maximal hypervolume for the setup of Lemma can be calculated in two
easy geometric ways. The first is considering the square spanned by the origin and
the reference point. Halving it results in the triangle of the reference point and the
assumed Pareto front g. Subtracting the triangles between the hypervolume and g
(Fig. [2.6] left) yields in combination the following equation.

1, 1/ ¢ \ 1, ¢
b = 56" = = )3 5 2 " 2 1) (23
1 q ¢ _ ¢m=2)
_5.(m_1)m—1.(m_2)m—1_2(m—1) (24)

Equation (2.4)) is geometrically interpreted as the bounding rectangle of the hyper-
volume with side lengths of (m — 1), rep. (m — 2) times the inter-point distance

6 =q/(m —1) (Fig. 2.6] right).

Algorithms and Problem Complexity
The hypervolume of a single point v € R? with v < r results in

d

H({v},r) =[] (ri — ). (2.5)

i=1

Hypervolume algorithms typically expect a set of pairwise incomparable points as
their input. This demands a preprocessing that filters out copies and dominated
points. The runtime of detecting the subset of non-dominated points is O(m logm)
for d = 2,3 and O(m(logm)?=2) for d > 4 according to Kung et al.| (1975)). Filtering
copies is possible within these runtimes.
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f2 A
r
o)
v
v@
v
MOy S—
v(®
> fl
Fig. 2.7: Tllustration of the hypervolume calculation due to equation (2.6). The set
{vD, ..., v} is vertically partitioned in rectangles.

In 2-dimensional spaces (d = 2), the hypervolume can easily be calculated as the
sum of areas of rectangles. A rectangle is spanned by a point in M and bounded in
one dimension by a neighboring point, and in the other by the reference point (cf.
Fig. . Sorting M = {v), ... v(™} ascending regarding the first component,
e, o) <o < < o™ it also holds v§” > v > ... > ™. Then the
hypervolume of M with M < r is

m

1 1 7 1—1 7
H(M,x) = (ry — oY) (ra = 0§) + ) " (ry = o) (087 = o). (2.6)
=2

Partitioning horizontally instead of vertically works analogously.

For d = 3 |Fonseca et al,| (2006) give an asymptotically optimal algorithm with
a runtime of O(mlogm). Generalized to higher dimensions its upper bound is
O(m®2logm).

The first hypervolume algorithm HSO has been described independently by Zitzler
(2001)) and Knowles| (2002)). In the worst case of HSO, the space gets partitioned
into (m;_dl_ ?) cuboids (cf. [While et al. (2006)), resulting in a runtime of O(md1).
While et al.|[(2005) developed heuristics for HSO, which reorder the input such that
the worst possible case is avoided, while the resulting runtime is unknown. |Fleischer
(2003) developed an algorithm called LebMeasure whose upper bound equals the
one of HSO but has been published claiming a polynomial runtime, proved wrong
by [While (2005). [Beume and Rudolph (2006a))* and independently [Fonseca et al.
(2006)) observed that the hypervolume is a special case of Klee’s measure problem
(cf. [Klee| (1977)), for which the algorithm by |Overmars and Yap (1991)) gives an
upper bound of O(m%?logm). In Beume (2009)*, this algorithm is adapted to
the special case of the hypervolume and simplified, while preserving the runtime,
as described in detail in Section [2.3] The algorithm in [Overmars and Yap) (1991))
has been slightly improved by |Chan| (2010) such that the smallest known upper
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bound for the hypervolume is O(m#?2°00°8” ™) (with log* denoting the iterated
logarithm).

Bringmann and Friedrich| (2008) show by reduction from the problem MON-CNF
(satisfiability of monotone boolean formula given in conjunctive normal form) that
the hypervolume computation is # P-hard (see Wegener| (2005) for an overview of
complexity classes). This means that no algorithm with a polynomial runtime can
exist, assuming P # NP. The only concrete lower bound of the hypervolume is

given by [Beume et al. (2009a)* as Q(mlogm) for d > 2 as described in detail in
Section 2.2

The proven hard complexity motivates the development of approximation algo-
rithms (see e.g. |Vazirani| (2004) for an introduction and overview of approximation
algorithms).

It is easy to verify whether a point lies inside or outside the dominated hypervolume.
This way, the hypervolume can be estimated by Monte Carlo sampling (see |[Kroese
et al| (2011) for an introduction and overview of Monte Carlo methods) as done
by Bader and Zitzler (2011)), Bringmann and Friedrich (2008, [2009a)), and [Everson
et al.| (2002).

The approach in Bringmann and Friedrich| (2008) is the first FPRAS (fully poly-
nomial-time random approximation scheme, cf. Vazirani| (2004))), i.e., the expected
runtime is polynomial regarding the input and the failure probability. With proba-
bility 1 — 4, it provides an additive e-approximation of the hypervolume in runtime
O(log(1/8)md/e?).

For the calculation of the hypervolume contribution, |Bringmann and Friedrich
(2009b) give an algorithm based on the one by Overmars and Yap (1991) with
runtime O(m®?logm + m?) for the contribution of all subsets of size A to a set of
size m = p + A. This way, the best subset of size p is detected by discarding the
worst subset of size A, as required in a (x4 A) selection scheme of a multiobjective
evolutionary algorithm. By reduction from #MON-CNF, they show in Bringmann
and Friedrich (2009a)) that the problem of identifying the point with minimal hy-
pervolume contribution of a set is # P-hard, and approximating it by a factor of
29""° is NP-hard for any €. Nevertheless, the authors give a practical approximation
algorithm with runtime Q(dm?) which seems to be the typical runtime in practice.
The hypervolume shall measure the quality of an approximation of the Pareto front.
Its suitability for this task can be evaluated by the concept of the approximation
factor from theory of approximation algorithms. Bringmann and Friedrich (2010a)
consider bi-objective problems with the Pareto front consisting of a monotonically
decreasing, upper semi-continuous function. Considering a set of size m approx-
imating a Pareto front, Bringmann and Friedrich| (2010a)) show that the optimal
multiplicative approximation factor is 1 + ©(1/m). The same holds for sets of m
solutions with maximal hypervolume (w.r.t. a Pareto front), whereas the constant
hidden in the Landau notation can be large. [Bringmann and Friedrich| (2010bj)
show that the additive approximation factor differs from the optimal one by a
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factor of at most m/(m — 2), whereas such a good factor cannot be achieved re-
garding the multiplicative approximation. (Note that the proofs of the proposed
theorems are currently unpublished.) Therefore Friedrich et al| (2011) suggest the
logarithmic hypervolume whereas the input is logarithmized before the hypervolume
calculation, yielding a near optimal multiplicative approximation factor.
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2.2 Lower Bound

Knowing that the hypervolume problem belongs to the complexity class #P de-
scribes the limits of the runtime only in a rather abstract way. Beyond that, we
are interested in the complexity given as a concrete lower bound for all problem in-
stances that is especially sound for instances of realistic size. We prove the highest
known concrete lower bound of Q(mlogm) for calculating the hypervolume of m
points by reduction from the so-called Uniform Gap problem. This bound is sharp
for the 2- and the 3-dimensional version of the hypervolume, so that the problem
complexity is ©(mlogm) for d € {2,3} and Q(mlogm) for d > 4. The proof is
detailed after the description of the reduction method.

A lower bound of the runtime of a problem says that the worst case instance of the
problem cannot be solved faster by any algorithm in the computation model (the
standard model in algorithmics, see Section .

Lower bounds do not have to be developed from scratch but can be transferred from
one problem to another, i.e., by considering the relative complexity. A tool of this
kind is the method of reduction. It was originally described for decision problems
as formal languages to be accepted or rejected by a Turing machine. We use the
definition of reduction as ‘algorithmically no more difficult than’ as formulated by
Wegener| (2005, Def. 4.1.1).

Definition 2.8 A problem A is algorithmically no more difficult than a problem B
if there is an algorithm solving A that makes use of an algorithm solving B and has
the following properties, with p(m), q(m),r(m) denoting polynomials with respect
to the input size m:

1. The runtime of the algorithm for A, not counting the calls to the algorithm
for B, is < p(m).

2. The number of calls to the algorithm solving B is < q(m).
3. The input size for each call of the algorithm for B is < r(m).

Then, if the algorithm for B has the runtime tg(m), the algorithm for A has the
runtime t4(m) < p(m) + q(m) - tg(r(m)), and we denote A as polynomial-time
Turing reducible to B, written as A <7 B.

The algorithm for A has to solve each problem instance of A. Depending on its
input, it generates input instances for . The solutions to B returned by the
algorithm for B are afterwards interpreted to generate a valid solution for A. The
problem instances for B could be encoded subproblems of A. In the simplest case,
the complete input instance of A is transformed to one input instance of B, and
the solution of B is retransformed accordingly.
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If a lower bound for A is already known, then the runtime of the solver of B
including the transformation cannot be smaller than this lower bound. This way
the lower bound of A can be transferred to B by rearranging the inequality in

Def. 2.8

<tp(r(m)), q(m)=1 (2.7)

By this reduction two problems can be shown to belong to the same complex-
ity class. For more dignified statements, the polynomials p(m), g(m),r(m) of the
transformation have to be small.

A reduction from the problem Uniform Gap (UG) to the dominated hypervolume
H(A,r) is performed to transfer a lower bound of UG to H(A,r). In the concept
of the reduction method described above, UG is the analyzed problem A, and the
hypervolume (HV) is the problem of interest B.

Definition 2.9 The following decision problem is called Uniform Gap (UG): Given
a set {zW, 2@ . 2M} C R and § € R decide whether the i € {1,...,m}
can be permuted by a permutation ¢ into a non-decreasing sequence such that the
gap between each pair of consecutive elements equals 0, i.e.,
VI<i<m-—1:200) 4§ =gl+n)

For Uniform Gap, a lower bound of (mlogm) is known (see e.g. |Preparata
and Shamos| (1988, Th. 6.16)). Obviously, the problem can be solved by sorting
and calculation of the distances in time O(mlogm), resulting in a complexity of
©(mlogm).

Theorem 2.10 Solving H(A,r), with A C R4 |A] = m,r € R? has a time com-
plexity of Q(mlogm). (Beume et al| (2009a)*).

Proof. We show that UG is polynomial-time reducible to the 2-dimensional (d = 2)
hypervolume (HV2). Thereby, the lower bound of Q(mlogm) immediately follows
for the 2-dimensional hypervolume due to Def. The relating property of the
problems is that the hypervolume of linearly positioned points is maximal if the
points are equally spaced, as proved in Lemma 2.7 We argue that the reduction
to higher-dimensional versions of the hypervolume works analogously.

Algorithm [2.1] solves UG by solving HV2 as follows. Let the input for UG be
given as A = {zW 2@ . 2™} c R and § € R. First the minimal and
maximal element of A are determined in time ©O(m). Then, from each num-
ber in A, a 2-dimensional point is constructed by the number and its negation:
y@ = (2, —z®). Thereby, the points lie on a line with slope —1 in the second
and/or forth quadrant. By adding the minimal and maximal values respectively
(Alg. [2.1] line 4), the set of point is shifted to the first quadrant with the minimal
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Fig. 2.8: Transformation from UG to HV2. The input numbers of UG are transformed in

2-dimensional coordinates and normalized such that the points lie on a diagonal
in the first quadrant with the boundary point on the axes. Only if all neighbors
in the original set have distance J, the hypervolume is maximal.

Algorithm 2.1: UGsolver(A4, 9)

input - set of m numbers A = {z®, ... 2™} C R, distance § € R

output : Is the input an instance of UG? (true or false)
1 Cmax = max{z® | 20) € A}
2 Cpin = min{z® | 20) € A}
3 forie{l,...,m} do /* transformation to 2 dimensions */
4 L y(Z) A (m(z) + Crmin; _x(z) + Cmax)
5 C = Cmax — Cmin

2

6 hvia = %C2.— T /* acc. to (2.3) */
7 hv = H({y®,...,y™1 (¢ c)) /* call hypervolume algorithm for d = 2 */
8 if hv == hv,.. then
o | return true /* (A, 6) € UG */
10 else
11 | return false /* (A, 0) ¢ UG */
and maximal elements on the coordinate axes. The value ¢ = ¢pax — cmin describes

the length of the interval enclosing the points (Fig. . Then, it is checked whether
the transformed input corresponds to the setup of Lemma [2.7

The line, the points lie on, can be considered as a Pareto front ¢g(y) = —y + c.
Then, we know by Lemma that the hypervolume of points on a linear Pareto
front is maximal if the points are equally spaced along the Pareto front. Thus, the
hypervolume value of equally spaced points is unique, i.e., there is no other set of
points yielding this hypervolume value.

4

4



2.2 Lower Bound

The maximal hypervolume of uniformly spaced points on ¢ is calculated according
to equation w.r.t. the reference point r = (¢, ¢) in time ©(1). We call a
hypervolume algorithm for d = 2 to solve H({y®,...,y™1} (c,c)) and simply
check, whether the returned value equals hv,,,,. In case of equality, UG is solved

as (A,9) € UG, and otherwise (A,9) ¢ UG.

The runtime of Algorithm [2.1] without the hypervolume algorithm is linear (p(m) =
©(m)). The hypervolume algorithm is called exactly once (¢(m) = 1), whereas the
input size is 7(m) = O(m). Equation results in t4(m) — O(m) < tg(r(m)) =
Q(mlogm) < tg(r(m)), and we proved UG <y HV2, with a lower bound of
Q(mlogm) for HV2.

The reduction to higher-dimensional versions of the hypervolume works by embed-
ding the described 2-dimensional construction as the first coordinates and setting
all other coordinates to 1, ie., y¥ = (29 + cpin, —29 + cpay, 1,...,1). A
hypervolume algorithm for the d-dimensional input is called with reference point
(c,e,1,...,1). As multiplication by 1 does no change, the hypervolume value equals
the one of the 2-dimensional version and is checked against hv,,,, which is calcu-
lated as before. Thus, it holds UG <y HYV for arbitrary d > 2. The input
size for HV is enlarged by factor d compared to the input of UG. This results in
Q(mlogm) — O(dm) < tg(dm), thus Q(mlogm) for HV with d = o(logm), and
the same lower bound for d = Q(logm) for reading the input.

O

45



2 Hypervolume Calculation

2.3 Upper Bound

The hypervolume is a geometric measure, so it appears to be obvious to investigate
whether the community of computational geometry may provide a solution. The
search for a similar problem resulted in the so-called Klee’s Measure Problem.

Definition 2.11 Let M = {[a®¥ b®M], [a® b®@],... [a™ b™]} c R?, d € N*,
m € N be a set of m d-dimensional intervals, each spanning a hypercuboid. Klee’s
Measure Problem (KMP) is the joined fair size (or measure) of the hypercuboids
w.r.t. the Lebesgue measure Leb defined as:

KMP(M) = Leb (6[a<i>,b<i>]> : (2.8)

i=1

Originally, the problem has been formulated for simple intervals in Klee (1977).
Bentley (1977) generalized it to d-dimensions, where the d-dimensional intervals be-
come axis-parallel hypercuboids, and we formulate the size here w.r. t. the Lebesgue
measure. Note that, independently of its dimension, a hypercuboid is completely
defined by two corners on a space diagonal, whereas the interval bounds give the
‘lower left” and the ‘upper right’ corner. The similarity to the hypervolume is ob-
vious in the chosen presentation as both measures calculate the size of axis-aligned
hypercuboids (cf. Equation (2.1))). [Beume| (2006)* and independently [Fonseca et al.
(2006)) observed the hypervolume to be a special case of the KMP.

f21 fot

|

= ]

> f1 > f1

Fig. 2.9: Left: Ilustration of the hypervolume consisting of overlapping hypercuboids
(rectangles in 2 dimensions) spanned with the reference point. Right: Example

of an instance of Klee’s Measure Problem (KMP) with arbitrarily positioned
rectangles.

o
L

To convert the input for the hypervolume into an input for the KMP, each point is
taken as the lower bound of an interval and the reference point is the upper bound
within all intervals.

While the hypercuboids of KMP may be positioned arbitrarily, the hypercuboids of
the hypervolume problem are aligned in a special way (Fig. [2.9). All hypercuboids
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2.3 Upper Bound

share the reference point as their common upper bound, i.e., the upper right corner.
If the input consists of mutually incomparable points only, then no hypercuboid
is completely contained within others—a fact that corresponds to the observation
that each non-dominated point has a positive contribution.

The KMP has a lower bound of Q(mlogm) for d > 1 shown by Fredman and
Weide| (1978). The algorithm by |Overmars and Yap| (1991) with a runtime of
O(m%?logm) has been the best known one until recently (Chan| (2010) yielded a
slight improvement to O(m%2200°8" ™)) with log* denoting the iterated logarithm.
The new idea is a subdivision of certain hypercuboids. With the described transfor-
mation of the hypervolume to the KMP, the following theorem immediately holds.

Theorem 2.12 The hypervolume of a set of m points in d dimensions can be
calculated in time O(m®?200°¢" ™)) " (Beumd (2009)*). O

The algorithm described in the following is based on the one by |Overmars and
Yap| (1991) and adapted to the special case of the hypervolume, i.e., the special
alignment of the hypercuboids is utilized for simplifications.

In the following description of the algorithm, we use the vocabulary of geometry
detached from the context of partially ordered points. For convenience, we omit
the prefix ‘hyper’ and talk of ‘volume’ or ‘cuboid’ in arbitrary dimensions. A point
is denoted to cover a region if it weakly dominates the region’s lower boundary,
thus the region is completely contained in the cuboid induced by the point. A point
partially covers a region if its induced cuboid intersects the region.

2.3.1 Hypervolume Algorithm adopted from KMP Algorithm

The following presentation is mainly transferred literally from (Beume, 2009, Sec.4-
5)*.  The algorithm by |Overmars and Yap| (1991) is a sweep-line algorithm that
uses a specific data structure to calculate a (d—1)-dimensional volume and performs
a sweep along the remaining dimension to get the d-dimensional measure. For the
partitioning of the (d — 1)-dimensional space into regions, a data structure called
orthogonal partition tree is used, i.e., a binary space partition tree whose splitting
lines are extensions of the axis-parallel cuboids. An example of a 3-dimensional non-
dominated set is shown in Figure and its corresponding orthogonal partition
tree managing 2-dimensional slices in Figure [2.11]

The significant idea of Overmars and Yap’s algorithm is to not partition the space
into empty and covered regions, but stopping the partitioning as soon as a region
contains a grid structure of rectangles, called trellis in the following. In a trellis,
the cuboids that intersect the region, cover it completely in each of the (d — 1)
dimensions except one. An example of this structure is shown in Figure 2.12] A
cuboid that does not cover the i"* dimension completely is called an i-pile. For
each dimension 7, the 1-dimensional KMP of the projection of the i-piles on the i*
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2 Hypervolume Calculation

Fig. 2.10:

Fig. 2.11:

The figure displays a non-dominated set of nine 3-dimensional points. The
weakly dominated volume is bounded by the reference point r. Along the d** co-
ordinates, the d-dimensional space is cut into (d — 1)-dimensional slices (dashed
lines), which are stored in the orthogonal partition tree. The d-dimensional vol-
ume is calculated by computing the (d — 1)-dimensional volume with the help
of the orthogonal partition tree and sweeping along the slices in dimension d.

[lustration of the 2-dimensional orthogonal partition tree for a 3-dimensional
KMP. The non-dominated set of Figure[2.10]is projected on the first two dimen-
sions. The lines show the partitioning of the 2-dimensional space, which is up-
per bounded by the gray reference point r and lower bounded by the contained
points. The dotted lines adumbrate their induced weakly dominated cuboids.
The orthogonal partition tree is depicted, whereas the nodes are placed along-
side their associated region. The sweep is performed along the third dimension

fs.

coordinate axis is solved. Thereby the exact position of the cuboids is neglected.
Let K; denote the value of the 1-dimensional KMP of the i-piles, and L; denote the
size of the region in dimension ¢, respectively. The contained volume of the region
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2.3 Upper Bound

is calculated by the inclusion-exclusion principle (cf. |Overmars and Yap| (1991))) in
constant time, assuming d is a constant:

> (= > I I =)l (2.9)

1<a<d—1 1<j1<..<ja<d—1 \ 1<i<a 1€{j1,mmja YNIE S

For clarification, we consider a 3-dimensional KMP with 2-dimensional volume in
the regions. Then the volume is calculated as: L1 Ky + Lo K — K1 K.

[...] |Overmars and Yap| (1991) describe two variants of their algorithm. In the first
version, the orthogonal partition tree is build up completely in a preprocessing step
and the sweep is performed afterwards, inserting beginning cuboids into the data
structure and removing enclosed ones. In the other variant, the data structure
is build on the fly by splitting the current node if necessary. By recursing on
the left child before the right, the partition tree is traversed in pre-order and the
sweep is simulated whenever a leaf node is reached. This technique refers back
to Edelsbrunner and Overmars| (1985) and is called streaming. The orthogonal
partition tree requires O(m®?) storage, whereas the streaming variant works with
linear space as only one node is considered at one time. Thus it is to be preferred,
easier to implement, and even more efficient because some special cases can be
handled easier. Here, the algorithm based on the streaming variant and adapted to
the hypervolume calculation (cf. Algorithm is described in detail with remarks
to differences to the original one by (Overmars and Yap) (1991)).

The main procedure of the algorithm has the following parameters.

double[] [] region The current region is represented by a two-dimensional array
containing the vectors of the lower bounds and the upper bounds.

list points Points whose induced cuboids partially or completely cover region
are stored in a list points.

int split The dimension at which region is cut to generate two child regions is
called split.

double cover The value of the d* coordinate of the first cuboid that covers the
parent node’s region is stored in cover.

Inputs of the algorithm are a set of non-dominated points and a reference point,
thereby the cuboids are represented indirectly. The reference point r, the initial
size m of the input set, and the dimension d are assumed to be known globally.
Before the main procedure HQY starts, the list of points is sorted ascending according
to the d*" component of the vectors. This sorting will be maintained stable in all
recursive calls of HOY. The procedure is initially called with the whole (d — 1)-
dimensional space as region, the non-dominated input set as points, split= 1
and cover as the d* coordinate of the reference point r. A small example with
m =9 points in d = 3 dimensions is pictured in Figure [2.11
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2 Hypervolume Calculation

Algorithm 2.2: HOY (region, points, split, cover)

1 coverNew = cover; coverIndex = 1; allPiles = true; bound = -1
/* is the region completely covered? */
while (coverNew == cover && coverIndex != points.length) do
if covers(points|coverIndex], region) then
coverNew = points|coverIndex][d]
volume += getMeasure(region) * (cover - coverNew)
else coverIndex+-+

o oA W N

while (points[coverIndex][d] == coverNew && coverIndex > 1) do coverIndex——
s if coverIndex == 1 then return

<

/* do the cuboids form a trellis? */
o for i =1 to coverIndex - 1 do
10 L if checkPile(points]i], region) == -1 then allPiles = false

11 if allPiles then

/* calculate volume by sweeping along dimension d */

12 i=1; forj=1tod-1do trellis[j| = r[j|
13 repeat
14 current = points[i][d]
15 repeat
16 pile = getPile(points|i], region)
17 if points|i|[pile] < trellis|pile] then trellis[pile] = points|i|[pile]
18 i++
19 if i < coverIndex - 1 then next = points|i][d] else next = coverNew
20 until current != next
21 volume += measure(trellis, region) * (next - current)
22 until next == coverNew
23 else

/* split region in two children regions */
24 repeat
25 intersect = (); nonlntersect = ()
26 for i = 1 to coverlndex - 1 do
27 intersection = intersects(points[i], region, split)
28 if intersection == 1 then add(points|i|[split], intersect)
29 if intersection == 0 then add(points|i|[split], nonIntersect)
30 if intersect # () then bound = median(intersect)
31 else if nonIntersect.length > /m then bound = median(nonIntersect)
32 else split++
33 until bound != -1

/* recurse on the two children regions */
34 regionC = region; regionC[1][split] = bound; pointsC = @
35 for i = 1 to coverIndex - 1 do
36 L if partCovers(points[i], regionC) then move(points|i], pointsC)
37 if pointsC # () then HOY (regionC, pointsC, split, coverNew)
38 reinsert(pointsC, points);
39 regionC = region; regionC|0|[split] = bound; pointsC =
40 for i = 1 to coverIndex - 1 do
a1 L if partCovers(points[i], regionC) then move(points[i], pointsC)
42 if pointsC # () then HOY (regionC, pointsC, split, coverNew)
43 reinsert(pointsC, points)
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2.3 Upper Bound

The algorithm recursively splits the region, whereas the two resulting regions cor-
respond to the children nodes within the binary tree. The splitting ends when the
region contains a trellis, thus a leaf node is reached and the volume can be calcu-
lated. The procedure HOY consists of three parts. First it is checked if a cuboid
covers region. If the remaining cuboids form a trellis, their hypervolume is calcu-
lated. Otherwise the region is further partitioned and the volume is calculated in
recursive calls.

The d** coordinate of the first covering point is saved as coverNew and the corre-
sponding index in points as coverIndex. The volume is increased by the region’s
complete (d — 1)-dimensional volume multiplied with the distance of coverNew to
cover. Since the list points is sorted according to the d* coordinate component,
the points behind coverIndex do not add volume. These and the point itself are
discarded in the remainder of this call of the procedure by considering points only
to index (coverIndex—1). The remaining points are still required on higher levels
of recursion. It may occur that points in front of coverIndex have the same d'*
coordinate as the point at coverIndex. These points must be discarded, hence
the additional while-loop reduces coverIndex if necessary. If coverIndex—1, HOY
is aborted because no points are left. In the original description, only covering
cuboids are removed. We added here, that covered cuboids are also discarded.

In the second part of HOY, the algorithm checks if the induced cuboids form a
trellis. If so, the sweeping along the d** dimension is performed to calculate the
contained volume. The points with the first d* coordinate (equal values may occur)
are considered and (d — 1) 1-dimensional KMP are solved for them. The (d — 1)-
dimensional volume is calculated by the inclusion-exclusion-principle according to
Eq. and multiplied with the distance to the next d** coordinate. This is done
for all consecutive d-boundaries. The last distance in dimension d is calculated as
difference to coverNew.

L, ) . L,
<]
K
Ky I Ly Ly
K, I
K, I
— —_ — I
K, K, K, K, K,

Fig. 2.12: The left figure shows an example of a 2-dimensional trellis for the general 3-
dimensional KMP. The structure on the right arises for the specific problem of
calculating the hypervolume, whenever the condition of a trellis is fulfilled.

To solve a 1-dimensional KMP on piles, Overmars and Yap invoke a segment tree
to calculate the union of the 1-dimensional intervals. For the special case of the
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2 Hypervolume Calculation

hypervolume calculation, this can be done significantly faster and segment trees
are not necessary. In case the cuboids fulfill the condition of a trellis, they actually
form an even simpler structure. An example is shown in Figure (right). Since
each cuboid extends to the reference point in each dimension, no upper bounds
of cuboids are contained inside of the current region. A region may only contain
lower boundaries and the remainder of the region is covered from thereon. Thus,
only the minimal i*" coordinate of the i-piles has to be identified. The result of the
1-dimensional KMP is the difference of this value to the region’s upper bound, re-
spectively in each dimension. The minimal values are stored in a (d—1)-dimensional
array called trellis. Cuboids that become active during the sweep procedure are
checked if they undercut the current values in trellis. Then trellis is updated
in constant time by just one comparison. The update of the originally applied seg-
ment tree takes time O(logm). This factor is saved on by this adapted algorithm.

If the cuboids do not form a trellis, the region is split in two and the algorithm
proceeds on the two emerged regions. The partitioning aspires that no points
are contained inside of a region. To this end, the dimension that is cut by the
splitting hyperplane is to be determined. As the cuboids are axis-parallel, the
it" coordinate of a point induces a so-called i-boundary that is a hyperplane which
cuts through the 7" coordinate axis and is parallel to all others. The sub-procedure
intersects detects whether a given point induces a split-boundary inside of the
region. Points that additionally induce an ¢-boundary with ¢ <split are stored
in a list intersect, the others in nonIntersect. By recursion, the region will be
split along each of the split-boundaries of the points in intersect. In each call
of HOY, the median of these split-boundaries is chosen as the splitting hyperplane.
This choice takes time O(coverIndez). If intersect is empty, but nonIntersect
contains more than y/m split-boundaries, the region is split along the median of
these. The list intersect is especially empty for split=1. Thus, the points are
partitioned into subsets of size O(y/m) while splitting across the first dimension.
If intersect is empty and there are not more than /m split-boundaries in
nonIntersect, split is increased and the search for the splitting line is tried
again, beginning with the sub-procedure intersects.

In the example of Figure [2.11] the space is split once along the median 1-boundary.
Afterwards, each region contains no more than V9 = 3 1-boundaries and split
is increased. The left region is split along the median 2-boundary of those points
that establish a 1-boundary within the region. Concerning the left child region, the
point d is a 1-pile and no further partitioning is required. The right child region is
split again because the point b is located inside of it.

Knowing the splitting line, the left child region is defined accordingly. Points that
partially cover the child’s region are sent down to recursion, together with the
child region itself, the split value, and the value of coverNew of the current region.
Afterwards, the points are reunited with the list points and the recursion on the
right child’s region is performed analogously.
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2.3 Upper Bound

Note that points are never copied, but moved from points to other lists if necessary.
Thus, recursion does not cause any increase of storage, since each point is stored at
only one place at one time. Invoking pointers to the elements in points would also
be possible as their amount of storage is marginal. All lists of points are sorted,
since this is done in the pre-processing step. Whenever a list is to be reunited with
points, this can be done in linear time, whereas the sorting is maintained.

[...] Details on the implementation of the sub-procedures invoked during HOY (Al-
gorithm [2.2)) are described in a technical report (cf. Beume and Rudolph| (2006b))*).

2.3.2 Theoretical vs. Experimental Runtime

[...] The two variants—the classical one and the streaming technique (cf. Section
[2.3.1)—of the algorithm by [Overmars and Yap| (1991) have the same run time.
Actually the same operations are done, though in different order. The authors de-
scribe the analysis for the variant which completely builds the orthogonal partition
tree before the sweep. The pre-processive sorting requires O(mlogm) time. It is
shown that a cuboid is stored in O(m(@=2/2) leaves of the partition tree since the
partitioning ensures that this is an upper bound for the number of partially covered
regions.

The proof of the upper bound of the runtime is based on the number of partially
covered regions per cuboid. Here, the explanation that this number does not exceed
O(\/md_2) is given. Recall that a cuboid partially covers a region if an i-boundary
cuts through the region. This characteristic is illustrated in Figure A region
that is generated by a splitting through dimension 7 is termed an ¢-partition. There
are O(y/m'~ ") (i — 1)-partitions. The i-boundary of a cuboid intersects an (i —
1)-partition at most once and thereby cuts through one of its i-partition. Thus
an ¢-boundary intersects O(\/ﬁz_l) i-partitions. When the partitioning is done
concerning the remaining (d — 1 — i) dimensions, each i-partition is subdivided
into O(v/m* ™) (d — 1)-partitions. The cuboid’s i-boundary cuts O(y/m' ') -
O(\/md_l_i) = O(\/md_2) (d — 1)-partitions, which corresponds to the number of
leafs that contain the cuboid.

The contained volume within these leaves has to be updated when the cuboid is
inserted or removed from the orthogonal partition tree during the sweep. Thus,
over all cuboids there are O(m =272 . m) = O(m¥?) updates. Updating means
computing the measure in the trellis for each step of the sweeping. This originally
takes time O(logm) with the help of the segment trees, but the adapted algorithm
(Algorithm computes an update in constant time. The number of inner nodes
influenced by a cuboid is bounded by the number of influenced leaves times the
depth of the tree, so updating these results in a run time of O(m¥?logm).

To get a notion of the actual performance of the presented algorithm (termed
HQOY), it is applied to common test sets provided by While et al| (2006) and its
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X

i-partition —>
(i-1)-partition —»|

i-boundary

Fig. 2.13: Illustration of the number of intersected regions. The dashed lines adum-
brate the induced weakly dominated hypercuboid. The columns show (i — 1)-
partitions with their contained i-partitions. The bold ¢-partitions are inter-
sected by the i-boundary of the hypercuboid.

runtime is considered in comparison to algorithms by [Fonseca et al.| (2006) (termed
FPL). The question we want to pose is which algorithm is the fastest on these test
functions.

HOY has been implemented in C++ and the FPL algorithms in C. The programs
were compiled with G+-+-4.2, GCC-4.2 respectively, with optimization level 3 and
run under Ubuntu 8.04.1 on a single core Intel Pentium IV 3.4GHz processor with
1MB of cache, which is almost the same hardware setup as used in the study by
Fonseca et al.| (2006). To allow comparability we choose the test family DTLZ-
Sphere (corresponding to DTLZ2, see [Deb et al.| (2002b])) and Random which were
also invoked in the previous study and additionally DTLZLinear (DTLZ1). The
data sets are random samples of these Pareto fronts of different size with three
to nine objectives. The reference point r for the hypervolume calculation is cho-
senas (2,...,2)", (11,...,11)7, (1,...,1)T, respectively, so that all Pareto optimal
points dominate it. For each setting (dimension and size fixed) 10 sample sets are
processed. Source code of the algorithms are available at the authors’ homepages.

The variants FPL3 and FPL4 have been considered since they outperform variants
1 and 2 in the earlier study. FPL4 shows a slightly better performance than FPL3
with lower variance, so only the results of FPL4 are shown here. They resemble the
results in [Fonseca et al|(2006) where objectives have been read in reverse order to
comply with the preceding study by While et al.| (2006). Since FPL4 outperforms
the HSO in that study and no implementation of the HSO with the permutation
heuristics by While et al. (2005) is available, HSO is not considered here.

The experimental results for the sets with d € {3,4, 5,6} are shown using Box-and-
Whisker plots in Fig. [2.14] Each set is processed twice: in original order and with
objectives in reverse order, whereas the longer runtime corresponds to the latter.
On the sets, both algorithm perform similar for d < 5 but FPL4 is a bit faster. For
d € {5,6} FPL4 is highly sensitive to the order of the objectives in the input. On
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Fig. 2.14: Results of FPL 4 (left) and HOY (right) on the test set DTLZSphere (top),
DTLZLinear (middle), and Random (bottom), with the number of points on
the horizontal axis and the computation time in seconds on the logarithmic
vertical axis. The objectives in the input set are in the original order for the
lower runtimes and in reverse order for the higher ones, respectively. The
DTLZSphere data set with 800 6-dimensional points is corrupt so the results
have been left out.
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Fig. 2.15: Results of HOY on the test set DTLZSphere divided by different functions as
potential upper bounds of the runtime.

the spherical and the linear Pareto fronts (Fig. , top, middle) there is partly
a hundredfold magnification of the runtime. HOY’s runtime does not deviate that
much due to permutations of the input so that its runtime lies between FPL4’s slow
and its fast runs. This might be due to the different techniques of dividing the space
into sub-problems. On the randomly generated fronts no significant difference can
be observed for different input orders. Further studies on different permutations
emphasize these observations.

Although HOY has a lower worst case runtime, this advantage seem not to strike
through for low dimensional sets of the considered size. Larger sets seem to be
required to reveal the lower magnitude of the runtime resembling the asymptotic
behavior. For the 5- and 6-dimensional data HOY performs better than the slow
runs of FPL4 also for small sets.

The indifference of permuting the random sets might be due to the lack of structure
so that no adversely constellation is formed. The questions arise how worst case
instances might be structured and if they occur at all in the practical application
scenario of the algorithms. To get insight to this, other sets featuring different
properties shall be considered in future studies. Both algorithms might be improved
by the heuristics of While et al. (2005]), where it is expected that FPL gains more
since there seemed to be easy constellations for it. However, it is unclear how much
speed-up can be gained. The HOY serves as a robust method regarding the order
of the input.
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To visualize the order of the measured runtime, we consider the longest observed
runtime on DTLZSphere (sets in reverse order) and divide it by an asymptotic
upper bound of m%? (denoted as ub) as shown in Fig. [2.15 (red symbols). The
graph is not a constant but decreases alluding that the concrete runtime is lower.
The blue curve with an additional factor of log(m)/y/m seems to be an adequate
estimate for this instance. The concrete constant of the runtime is irrelevant here
and just reflects processor speed. Small 3-dimensional sets seemed to fall out of
the schema, so it is assumed that their runtime is dominated by constants that lose
influence on the magnitude for larger sets.
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2.4 Conclusions

This chapter recapitulates the state-of-the-art on hypervolume research detailing
our contributions on distributions of points, and lower and upper bounds of the
runtime. In Section [2.1] properties of the hypervolume are presented in very simple
notation (waiving additional symbols from literature) to make the statements easily
readable. An overview of the research on multiobjective optimization with an
emphasis on the hypervolume is given in Brockhoff (2010b)).

Though Bringmann and Friedrich/ (2008)) proved the problem complexity as # P-
hard, a concrete lower bound is yet interesting as the complexity class does not give
a sound insight in small problem instances. We give the computational complexity
(matching lower and upper) for the highly practical problem instances of d = 2 and
d = 3. It might be negatively surprising that the 2-dimensional problem cannot be
solved faster than Q(mlogm) time or positively surprising that the 3-dimensional
hypervolume is of equal complexity. The true problem complexity is expected to
be larger than the lower bound for higher dimensions. Further dimension-specific
complexity results would be of interest.

The result regarding the distribution of points is a byproduct of two publications.
Recently, the topic gained attention to deepen the understanding of the structure
of sets with maximal hypervolume.

Identifying the hypervolume as a special case of Klee’s measure problem estab-
lished a new basis for theoretical analyses. This insight reduced the best known
upper bound dramatically from O(m?=1) to O(m%?logm). Our simplified algo-
rithm, adapted to solving the hypervolume, made this insight amenable to and
utilizable for the community of multiobjective optimization. It led to the current
best upper bound of O(m®?200°¢" ™)) and enabled and initiated further advance,
like algorithms for the hypervolume contribution.

The future of the hypervolume calculation seems to lie in the approximation, at
least when integrated into optimization algorithms to solve high-dimensional prob-
lems. Further results, regarding the approximation factor of the hypervolume for
d > 2 are desirable. Yet faster exact algorithms are of course interesting as well.
A promising open problem is the efficient update of data structures maintaining
the hypervolume. When calculated internally of an evolutionary multiobjective
optimization algorithm, the slight changing of the set from one generation to the
next could be sped up.
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3 Characteristics of
Hypervolume-based EMOA

Hypervolume-based EMOA are state-of-the-art methods for multiobjective opti-
mization. Our examinations are centered around certain features of the SMS-
EMOA (S-metric selection EMOA), whereas the results hold for a broader class of
algorithms as we generalize the aspects we focus on.

The following Section introduces basic properties of the SMS-EMOA in com-
parison to other popular EMOA. Section analyzes how fast EMOA converge
towards the Pareto front. Assuming that the population is located on the Pareto
front, we analyze whether the maximal hypervolume is reached by distributing the
points (Sec. . Afterwards, the performance of the SMS-EMOA is demonstrated
especially for problems with more than three objectives, while other EMOA fail
(Sec. . Section is dedicated to the parameter tuning of the SMS-EMOA to
adapt it to application problems. Finally, a hybrid SMS-EMOA is presented that
invokes gradients of the hypervolume in Section

3.1 Concepts and Properties

Quality indicators are applied to evaluate and compare the approximations of the
Pareto front generated by optimizers. Among these, the hypervolume is the most
accepted one and considered to be significant and fair. Since it is agreed that
the optimization goal is to reach a high hypervolume value (besides possibly other
quality values), the idea to directly aspire the hypervolume maximization within
the optimization process suggests itself. So, in hypervolume-based EMOA, the
hypervolume is used within the selection operator as a single-objective substitute
function. This way, a total order is established in the population, which solves the
problem of comparing individuals that are incomparable regarding the dominance
relation. In the following, we give an overview of hypervolume-based EMOA with
a focus on the SMS-EMOA, next to related EMOA considered in this chapter.

SMS-EMOA

The SMS-EMOA (S-metric Selection EMOA) developed by Emmerich et al.| (2005)*,
Beume et al.| (2007)* is a well-accepted hypervolume-based EMOA. Not all op-
erators of this EMOA are specified as it is mainly a selection concept. The
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3 Characteristics of Hypervolume-based EMOA

Algorithm 3.1: (¢ + 1)-SMS-EMOA

choose initial population P of size p from R”, set t = 0
repeat
choose parents for variation

create offspring Y from parents by variation
evaluate offspring Y
QW « (PO UY®)
{F,...,F,} + non-dominated-sorting(Q®)
if |F,| > 1 then
calculate adaptive reference point w.r.t. Q)
10 calculate hypervolume contributions of points in F),

© 0w N O ok W N =

11 remove element with smallest contribution from P®

12 else remove single element in F, from P®
13 increase generation counter t

14 until termination criterion fulfilled

other operators, namely initialization, parent selection, and the variation can be
chosen problem-specific—no special operator is required for the success of the
hypervolume-based selection. Yet, it is detailed below which operators are usu-
ally applied, after the description of the selection. An overview of the SMS-EMOA
is given in Algorithm [3.1]

The selection is performed in a steady-state scheme, i.e., (u+ 1), where exactly one
individual is generated per generation and a plus selection is performed to choose
the best succeeding population. This is the most direct way to incorporate the
information of the new offspring in the next iteration, and contrasts the popular
(@ + 1) selection of other EMOA.

After the offspring is generated, non-dominated sorting is performed for the popu-
lation unified with the offspring. This sorting partitions the individuals according
to their objective vectors into non-dominated sets or anti-chains.

Definition 3.1 Non-dominated sorting is a hierarchical partitioning of a multiset
F with elements from R? into partitions (or fronts) Fy, ..., F,, such that the following
properties hold:

1. Fy = ndms(F).
2. Viwith2 <i<wv: F=ndms(F\U,F))-
3. ndms(F,)\ F, =10 .

The last aspect implies that partitioning according to 1. and 2. results in exactly
v partitions. The partitioning bases on Dilworth’s decomposition theorem (cf.
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Fig. 3.1: Selection of SMS-EMOA. Left: Non-dominated sorting of Q) into fronts
Py, F5, F5. Right: For the points of the worst front, the hypervolume w.r.t.
the adaptive reference point and their hypervolume contributions are calculated
(light gray rectangles).

Dilworth| (1950)) saying that a set of size h (in the case of dominance a transition
chain of h — 1 dominance relations) can be partitioned into h antichains or non-
dominated sets. A first algorithmic description for the application in the field
of evolutionary computation has been formulated by Goldberg (1989) roughly as
follows: The non-dominated multiset of F' is determined, resulting in the first front
Fj. Then this subset is removed from F' and the non-dominated multiset of F'\ F}
is determined. This multiset is removed and the process iterates until the set F
is empty, see Fig. ﬂ (left) for an example. The usage of multisets instead of sets
causes that copies are contained in the same front. The non-dominated sorting was
made popular by the application in the NSGA and NSGA-II as described below.
The runtime is O(plog?™ 1) due to for a population of size p in a
d-dimensional objective space.

After the partitioning, the worst individuals are in the worst front F,. Does F;, only
contain one element, then this is discarded, the population size is thereby reduced
to size p and the generation completed. In case that F, contains more than one
individual—which all are incomparable to each other—the hypervolume is invoked
to establish an ordering. To this end, the adaptive reference point (cf. Def. is
determined relative to Q® (cf. Algorithm line 9) thus has in each coordinate
the maximal value of the population plus one. Then the hypervolume of H(F,,r)
is calculated as well as the hypervolume contribution of each element of F;, to this
value. A naive way to do this is to calculate the contribution canonically according
to its definition as the set’s total hypervolume minus the set without that point.
Using the algorithm by Bringmann and Friedrich/ (2009b)) the hypervolume contri-
butions are calculated in one algorithm run, resulting in a runtime of O(u%? log i),
which is as well the total runtime of SMS-EMOA per generation without resources
for function evaluations.
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3 Characteristics of Hypervolume-based EMOA

Algorithm 3.2: SBX and PM variation

input : parents x(1, x(? from population P, parameters ne, 1,
output . offspring x(©)

/¥ SBX */

1 choose u uniformly from [0, 1]
1

2 if ©« < 0.5 then 3; = 2unett — 1 else B = (2(11%))m
s 2 =05( (1482l + (1 - )z )
4 21 =05((1-8)V + 1+ p)2?)

5 x(°) « choose uniformly x(°") or x(°? /* 1 offspring in SMS-EMOA */
/* PM */

min

6 set boundaries x;™" and z}"** for each decision variable z;
7 choose u uniformly from [0, 1]

8 if u < 0.5 then §; = (2u)m —1 else & =1 — (2(1 — u))m™

9 xz(o) _ xl(o/) 4 5i(x?1ax o x}i’nin)

In the following, the typical specification of the remaining operators is described.
The initialization is done uniformly at random, i.e., the initial individuals start at
random points within the search space. The parent selection is performed uniformly
as well, i.e., from the population two individuals are chosen (with replacement) as
parents, contrarily to the binary tournament used in most other EMOA.

As variation operators, the simulated binary crossover (SBX) and the polynomial
mutation (PM) by Deb and Agrawal (1995) and Deb and Goyal (1996)) are often
used. SBX tries to imitate one-point crossover on binary strings where the off-
spring is created by adopting the values from one parent until the index of the
crossover point, and beyond the values from the other parent. Details are given
in Algorithm according to the description in Deb| (2001). The spread factor (
determines the distance of the offspring to the parents. SBX always creates two
offspring, so for the SMS-EMOA only one of them is chosen randomly and then
mutated, whereas for other EMOA both offspring are used.

External parameters of SBX and PM are the distribution indexes n.,n,, € RT,
respectively, controlling the variance. For our experiments, our implementation
bases on the NSGA-II implementation (cf. Deb et al.| (2005b)) which uses two
additional parameters p. and p,,. The parameter p. is the application probability
of SBX, so if it is not performed, the parents are copied unchanged. The parameter
Pm gives the probability to perform PM per decision variable, if it is not applied
the variable is left unchanged. The implementation of SBX and PM in NSGA-II
slightly differs in other aspects from Algorithm [3.2] e.g. SBX is only performed
with a probability of 0.5 per variable.
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Variants of SMS-EMOQOA

The SMS-EMOA on bi-objective problems can operate without a reference point by
always keeping the boundary solutions, i.e., those without a worse neighbor in one
objective. The SMS-EMOA has been introduced with this concept in [Emmerich
et al.| (2005)*, whereas the adaptive reference point has firstly been suggested in
Naujoks et al. (2005a)*. However, the usage of the adaptive reference point is
recommended.

Several variants of the SMS-EMOA with slightly different selection concepts have
been presented in Naujoks et al.| (2005a)*. They are not considered in his thesis
but briefly mentioned for completeness. One additional selection criterion is the
number of dominating points of a point v in a population P®:

d(v,PY)={aec PY |a< v} (3.1)

After non-dominated sorting has been performed, the selection is such that the
hypervolume is only invoked when the population and the offspring form a non-
dominated set, i.e., the non-dominated sorting resulted in a single front. Otherwise,
in case of dominated individuals, the number of dominating point is used to de-
termine a worst individual among those of the last front. For each point, the
number of points dominating it is counted, and the point with the highest number
is considered to be the worst. It is a kind of diversity measure as it assumes that
point within an areas of many better ones are dispensable, whereas points in less
explored regions are kept. This measure is moreover faster than the hypervolume
calculation. It is expected that the dominating points measure mainly comes into
operation in the early generations. After some iterations, the population typically
is a non-dominated set and the situation is changed only slightly by the offspring
that may be incomparable, dominated or dominating. So the cheaper measure is
applied in the beginning of the optimization and the more time-consuming hyper-
volume when more precision is required close to the Pareto front. Thereby the
algorithm’s runtime is reduced and performance studies showed that this version
performs similar to the original SMS-EMOA (cf. Beume (2006); Naujoks et al.
(2005a)); [Wessing and Naujoks (2010)*). The non-dominated sorting can also be
left out in this version of the SMS-EMOA, making the algorithm conceptually
simpler, while still maintaining its effectiveness (cf. Beume| (2006)*).

Wessing and Naujoks| (2010) studied variants with offsets for the adaptive reference
point different from the vector of ones. Yet, no clear conclusions could be gained.
Two variants of the SMS-EMOA with dynamic population size have been considered
in Naujoks et al.|(2005a)*. The idea is that a small population shall be able to move
faster (anent to iterations) towards the Pareto front. Starting with a small initial
population size, only the non-dominated individuals are kept while all dominated
individuals are discarded. The population then grows and develops into a larger
non-dominated set. One variant is to define a certain maximal population size
and to discard one individual via the hypervolume selection in case that the size
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3 Characteristics of Hypervolume-based EMOA

is exceeded. A second variant is to switch to a selection with fixed population
size, i.e., the original selection as soon as the maximal population size is reached.
Thereby dominated individuals may survive in the population and the idea is that
this may increase the diversity and simplify the spreading along the Pareto front.
The SMS-EMOA has moreover been considered in a meta-model-assisted frame-
work in [Emmerich et al.| (2005)*, Beume et al.| (2007)*, Naujoks et al. (2005b)*. A
Kriging model is applied to pre-evaluate individuals and to evaluate only promising
individuals exactly. This shall reduce the amount of time-consuming evaluations
of real-word problems.

Properties

The hypervolume of the population tends to grow throughout the optimization, but
it is not monotonically increasing. It may happen that the population’s hypervol-
ume decreases compared to the previous generation, when this process is observed
by calculating the hypervolume w.r.t. a fixed reference point. This is due to the
internally adaptive reference point which alters the optimization goal.

The SMS-EMOA aims at optimizing the hypervolume of its population by keeping
the individuals with highest contribution to this measure, which shall minimize
the loss caused by the selection. Yet, this approach is just a surrogate of what
is actually aspired. The maximization of the points’ hypervolume contributions
is not equivalent to the maximization of their total hypervolume. This is obvious
for a continuous Pareto front: The limit values of the distances between points are
zero, and so are their hypervolume contributions as their dominated regions overlap
almost completely but the hypervolume is maximal. So, the hypervolume contri-
bution is an effective concept but not equivalent to aiming at optimal positions of
all points.

Brockhoff et al.| (2008) performed a theoretical runtime analyses of an algorithm
called SIBEA which corresponds to the SMS-EMOA framework. They considered
two academic test problems in binary spaces. For the problem LOTZ (leading ones,
trailing zeros) a runtime of O(un?) has been shown, while for the more complex
one, the authors indicate to be unsure about the correctness of the proof. This is
the only runtime analysis of hypervolume-based EMOA, so that our convergence
rates in Section are the only results for continuous search spaces.

Applications

The SMS-EMOA has been applied to aerodynamic test problems, namely the 2-
dimensional NACA in Emmerich et al. (2005)*, Naujoks et al. (2005b)*, |Beume
et al. (2007)* and the 3-dimensional RAE 2822 in |[Naujoks et al. (2005a)*, Naujoks
et al.| (2005b)*, Beume et al.| (2007)*, Beume et al. (2008)* which are as well de-
scribed in Section [3.5] The article Beume et al| (2008)* is the first presentation of
the SMS-EMOA in a German journal. It reviews the previous work and describes

64



3.1 Concepts and Properties

applications to real-world problem. Next to the aerodynamic problems, there are
several application to vehicle routing problems, an optimization in chemical engi-
neering, and a gear shaft optimization. Further applications of the SMS-EMOA
are e.g. on surface reconstruction by Wagner et al.| (2007b)), water distribution
networks by Reehuis et al| (2011)), software architectures by |Li et al. (2011)), job
scheduling in grid computing by v. d. Kuijl et al. (2010), and molecular control
using femtosecond lasers techniques by Klinkenberg et al.| (2010).

Other Hypervolume-based Methods

We give a brief overview of other methods using the hypervolume.

IBEA With the IBEA (Indicator-based EA) by [Zitzler and Kunzli (2004) a frame-
work of applying a quality indicator in the selection has been developed, thereby
it gave the name to a class of EMOA. Variants with the hypervolume as indicator
(IBEAgp) and the additive e indicator (IBEA.+) are popular. Contrarily to the
SMS-EMOA, a binary quality indicator is invoked for a pairwise comparison of
individuals. We consider the mentioned two variants of IBEA in Section [3.2] and
in the benchmarking of Section [3.4]

The IBEA performs a binary tournament for mating, and after arbitrary variation
operators, the following indicators are used for the fitness assignment and a (u+ p)
selection. For two points, I.,(a,b) calculates the minimal distance ¢ by which a
can be or needs to be moved in each direction in order to weakly dominate b:

I..(a,b) = rgél{w e{l,...,d}: fi(a) —e < fi(b)}. (3.2)

The indicator value is negative or zero for a < b, so the smaller the better.
For two points, Iy p is defined as

_ H({b}vr) _H({a}ar) ifa<b
Inp(a,b) = { H({a,b},r) — H({a},r) otherwise. (3:3)
The definition is similar to the hypervolume contribution in the latter case, but
also defined for dominated ones. The indicator values are subsumed in the fitness
function

Fla)= Y —e/a/n (3.4)

beP\{a}

including a scaling factor . The fitness is to be maximized. The worst individual
is discarded iteratively, while updating the fitness values after each reduction of
the population. The runtime is stated as O(p?) in |Zitzler and Kiinzli| (2004).

65



3 Characteristics of Hypervolume-based EMOA

MO-CMA-ES The CMA-ES (Covariance Matrix Adaptation Evolution Strat-
egy) by Hansen and Ostermeier| (2001), Hansen et al.| (2003), [Hansen| (2006)) is
the state-of-the-art EA for single-objective optimization. In EC, the mutation of
a genome has traditionally been done by adding a normally distributed vector. In
order to efficiently explore complex search landscapes, a distortion of the distri-
bution is desired, which the CMA-ES realizes by the adaptation of the covariance
matrix of the normal distribution. The multiobjective version of the CMA-ES,
the MO-CMA-ES by [Igel et al. (2007), Suttorp et al. (2009), Vo et al. (2010)),
results in a powerful EMOA. The MO-CMA-ES is not included in our benchmark
on many-objective problems as it has not been developed till then.

MO-CMA-ES combines the selection of the SMS-EMOA with the variation from
the CMA-ES. One parent is selected uniformly at random from the population, it
is copied to generate an offspring, which is then mutated according to the parent’s
strategy variables. The selection is performed according to the non-dominated
sorting and the hypervolume like in the SMS-EMOA. If the offspring survives,
i.e., is not the worst individual, its step size and Cholesky factor are updated
(Suttorp et al. (2009, Procedure updateCholesky)), followed by an update of the
parent’s step size (see[Vols et al.|(2010)). The Cholesky factor determines the shape
of the distribution used for future mutations of this individual’s offspring. The
covariance matrix is not directly calculated but given implicitly by the Cholesky
factor. Starting from the unit covariance matrix it is stepwisely adapted, aiming
at the approximation of the inverse of the Hessian.

Depending on the dimensions of the problem and the algorithm parameterization,
the runtime of the MO-CMA-ES is either dominated by the covariance matrix
adaptation, requiring ©(n?) or by the hypervolume computation for the selection
as O(u??log ).

ESP A first hypervolume-based EMOA was ESP (Evolution Strategy with Prob-
abilistic mutation) by [Huband et al.| (2003), which uses a rough estimation of the
hypervolume contribution for selection. For a point y in a set M, it is defined as

Hesp(y, M) = [I, min{y, — v | vi<y,, y € M}, (3.5)

which corresponds to the product of the distances to the neighboring points. The
boundary points are assigned a value of infinity. In a 2-dimensional space, this
measure of the inner points indeed equals the hypervolume contribution, but for
higher dimensions, it is an approximation of unknown quality. The selection is
performed in a (u + p) scheme.

HypE |Bader and Zitzler| (2011) developed the hypervolume-based EMOA HypE
(hypervolume estimation), which uses an estimation of the hypervolume via Monte
Carlo sampling. They exploit the fact that it can be decided efficiently whether a
point is located inside or outside the dominated hypervolume.
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SPAM A more general framework than IBEA for respecting several preferences,
e.g. expressed by quality indicators, in a hierarchical process is SPAM (Set Pref-
erence Algorithm for Multiobjective optimization) by Zitzler et al. (2008b)). It is
specified which properties indicator shall have in order to refine the order with each
stage. The hypervolume is highly qualified to be applied in the framework due to
its strong properties.

Archiving Strategies The selection according to a quality measure is not only
applied within populations but also for maintaining an external archive (of an
arbitrary multiobjective optimizer) of fixed size as formulated by |[Knowles and
Corne (2003)). They describe a reduction procedure AA,.4,.. for updating an archive
and also suggest the hypervolume contribution as a selection criterion.

Swarm Algorithms Following the principals from hypervolume-based EMOA,
analogous techniques have also been developed for swarm algorithms, see e.g.
Mostaghim et al.| (2007), or artificial immune systems by [Pierrard (2011) and may
as well be integrated into other methods.

Related EMOA

We give an overview of other EMOA studied in this chapter, which do not invoke
the hypervolume.

NSGA-II  The NSGA-IT (Non-dominated Sorting Genetic Algorithm) by Deb et al.
(2002a)) is clearly the most popular EMOA and has been used in hundreds of ap-
plications. Its original version is nowadays no longer recommended as it is outper-
formed by modern EMOA. Our studies contributed to this notion by performance
benchmarks, revealing its drawbacks especially in case of many objectives as ana-
lyzed in Section [3.4] We also refer to NSGA-II in Section [3.2]

NSGA-IT was the archetype of SMS-EMOA, so they have in common the non-
dominated sorting, whereas the hypervolume contribution is invoked instead of the
crowding distance as the secondary selection criterion, and the NSGA-II uses a
(1 + ) selection. The parents are determined through a binary tournament, and
SBX and PM are applied as variation operators. The selection process starts with
non-dominated sorting of the population and the p offspring. The first fronts are
included as long as they completely fit into the next population. From the front
which can only partly be included due to the population size, the best individuals
are determined with the diversity measure crowding distance. It is defined as
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half the perimeter of the hyperrectangle spanned by the neighboring points of
the considered front M:

cd(a, M) = Zle min{b; —a; | a; <b;, b€ M}
+ min{a; —¢; | ¢;<a;, c€ M}, (3.6)

and for boundary points as infinity.
NSGA-II has a runtime of O(pulog? " 1), see|Jensen| (2003)), per generation without
counting the resources for function evaluations.

SPEA2 SPEA2 (Strength Pareto EA 2) by Zitzler et al. (2001} 2002) as well
belongs to the outdated algorithms nowadays, supported by our demonstration
that it is not qualified for many objectives (see Section [3.4)). We also refer to it in
Section 3.2

In addition to the population P® SPEA2 uses an archive P of mainly non-
dominated individuals, both of fixed size. Parents are chosen via binary tournament
selection from the archive ?(t). After arbitrary variation operators and evaluation,
the fitness is determined as follows. A strength value of each point is defined as the
number of points it dominates. For each point in (P® U ?(t)), the strength values
of its dominating points are subsumed to its raw fitness

raw(@ = Y. [c|b=c}, ab,ce(POUPY). (3.7)

b with b<a

Note that each non-dominated point has a raw fitness of zero. A k-nearest neighbor
method (see e.g. Silverman| (1986)) is additionally used. Roughly, the inverse of
the distance to the kth nearest neighbor, denoted as v¥ anent to point a, is used
as a density measure:

den(a) = (vE +2)7*. (3.8)

The fitness raw(a) + den(a) is to be minimized. The best individuals are copied
to the archive for the next generation. In case of equal fitness values, a k-nearest
neighbor distance with increasing £ is used as a further criterion.

The runtime of SPEA2 is O(u?), with |P®)| = |F(t)| = 41, in the worst case due to
the eventually elaborate k-nearest neighbor method, and typically O(u?log i) per
generation.

e-MOEA A more modern and very popular EMOA is the e-MOEA, based one
the at that time innovative concept of e-dominance by Laumanns et al.| (2002),
which means that the dominance relation among points is coarsened to the domi-

nance among boxes containing these points. The algorithm has been proposed by
Laumanns et al.| (2002) and further developed by Deb et al. (2005al). We consider
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the latter version of the e MOEA in the benchmark on many-objective problems
in Section 3.4

The e-MOEA manages a population P® of fixed size and an archive of non-
dominated solutions E®). From the population, a parent is determined via bi-
nary tournament selection w.r.t. the dominance relation, i.e., the non-dominated
individual wins the comparison or in case of mutually non-dominance, an individ-
ual is selected at random. From this parent and another one chosen uniformly
at random from the archive, one offspring is created by variation, typically using
SBX and PM. Then a steady-state selection is performed on the population. A
dominated offspring is rejected, whereas a dominating offspring replaces one of the
concerned population members chosen randomly. If the offspring and the popu-
lation members are mutually non-dominated, the offspring replaces a population
member chosen uniformly at random. If the offspring has been included in the pop-
ulation it is checked whether it is also admitted to the archive using the concept of
e-dominance as follows. The objective space is divided into a grid of hyperboxes,
whose size depend on the parameter vector € = (e, ..., €4). Each archive member
is attributed with a vector eb giving its position in the objective space in terms of
indexes of e-boxes as:

eb(a); = |(ai — ") /e;], i€ {l,....d} (3.9)

with a denoting its objective vector, and f™" the minimum possible objective value
of objective f;. Based on these eb vectors, the dominance is checked, i.e., if the
offspring is dominated, it is rejected; if it is non-dominated, it is added to the
archive. If it has the same eb vector as an archive member, i.e., is contained in the
same e-box, the decision is performed according to the dominance as usually. If both
points are non-dominated, then the one with the closer Euclidean distance to the
eb vector, i.e., the lower left corner of the box, replaces the other, so that at most
one point is contained in each e-box. Thereby the archive size is upper bounded
by the number of non-dominated e-boxes and enforces a good distribution of the
points. The archive (not the population) is the actual output of the algorithm.
The runtime per generation is with O(|E|) extremely low. The parameterization is
a bit difficult since the € vector determines the size of the archive, i.e., the output
set.

Besides the algorithms above, several others exist and new EMOA are steadily
developed. Outstanding from the mass are MSOPS and MSOPS-II by Hughes
(2005, 2007) due to their successful aggregation concept. MSOPS is studied and
described in detail in Section including an advancement. GDE3 by Kukkonen!
and Lampinen (2007) showed very good performance in competitions, where the
success is attributed to its variation by differential evolution (DE), which is studied
in Section [3.5
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3.2 Convergence Rates

Convergence rates express how fast an algorithm approaches a certain state, e.g.
having found an optimal solution. Therefore, these are strong descriptions of an al-
gorithm’s performance, but hard to gain for evolutionary algorithms. Convergence
rates have mainly been calculated for simple EA, but rarely for state-of-the-art EA
like presented in the following for the SMS-EMOA on bi-objective continuous prob-
lems and briefly for other EMOA, based on the publications Beume et al.| (2010)*
and |[Beume et al.| (2011)*.

The key idea of the proofs is to show equivalence between a multiobjective algo-
rithm and a single-objective EA. In EMOA, incomparable points w.r.t. the domi-
nance relation are typically compared regarding a single-objective substitute func-
tion, like the hypervolume in the SMS-EMOA. Selecting the points with best values
regarding that substitute function in the EMOA results in the same decisions as
the selection of a single-objective EA, which uses this substitute function (or a sim-
ilar function resulting in the same ranking of points) as its fitness function. Thus,
the selection of incomparable points w.r.t. the dominance relation is equal in both
algorithms. We show that the EA and the EMOA are algorithmically equivalent
by proving identical selection and assuming all other operators to be equal. This
is a new method to relate single- and multi-objective EA. A remarkable aspect is
that in our proofs the algorithmic equivalence holds for any bi-objective problem
without demands on the objective functions as we are considering the selection in
the objective space only. Thus, any future result regarding the single-objective EA
on a function class including the substitute function holds for the SMS-EMOA as
well.

Having proved the algorithmic equivalence, we transfer known results for the single-
objective EA on function classes including the substitute function to the SMS-
EMOA, and thereby gain first convergence results for a state-of-the-art EMOA.
These results apply to certain specifications of the algorithms, i.e., certain mutation
operators. In cases where no convergence result for the single-objective case is
known, the method is still helpful as it suffices to analyze the more amendable
single-objective EA instead of the EMOA. The contributions of this work are not
only the proved results but also the proof technique of relating single-objective EA
to multi-objective ones.

Related work and basic definitions are given in the following subsection. The
remainder of the section is structured regarding the selection scheme of the SMS-
EMOA, including different concepts for the choice of the reference point.

In Section the SMS-EMOA is considered with its original adaptive reference
point. The transformation is easy when the selection is performed on a set of two
points, so we can handle the cases of (141) and (1,2) selection, but no larger sets.
For the (141)-SMS-EMOA and the (1,2)-SMS-EMOA a linear convergence rate is
proved. It is thereby the only EMOA without an explicit weighting of the objectives
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reaching this speed. Due to the limitation of the approach, Section discusses
a new selection concept using pairwise comparisons of points, to base again on the
easy case of selecting among two points. Section [3.2.4] analyzes the SMS-EMOA
using a reference point that is fixed throughout the optimization process. Here, a
convergence rate is proved that is new for the single-objective EA as well. Finally,
other popular EMOA (NSGA-II, SPEA2, IBEA) are related to the analyzed cases
of the SMS-EMOA to show similarities and differences (Sec. [3.2.5)). This section is
closed with a summary and directions of future work (Sec. [3.2.6).

3.2.1 Preliminaries

Related Work

The following part is mainly transferred literally from Beume et al. (2010)*.
Convergence properties of EMOA are yet not well understood. More recently, the-
ory concentrated on the convergence or runtime of simple EMOA on special discrete
problems, considering whether and how quickly the Pareto set is reached. For the
case of a continuous search space R™ only a few results exist for specialized algo-
rithms, the first obtained by Rudolph| (1998). He showed that a multi-objective
(1+1)-EA that accepts incomparable points with probability % converges with prob-
ability 1 to the Pareto set if the step size is chosen proportional to the distance to
the Pareto set, while two other step size concepts fail. considered
stochastic convergence of EMOA with different selection schemes, the possibilities
of temporary fitness deterioration, and on problems with unattainable solutions.
A recent subject of interest has been whether a certain distribution on the Pareto
front can be obtained that is optimal regarding specified preferences.

Despite these advances, the convergence rate in continuous space remains a ne-
glected topic. [Teytaud| (2007)) shows that the convergence rate scales badly with
increasing number of objectives entailing that any comparison-based EMOA per-
forms hardly better than random search for a large number of objectives. Also a
general lower bound for the convergence time is given.

Convergence

The following part is mainly transferred literally from Beume et al.| (2011))*.

Definition 3.2 Let X be a random variable and (X;) a sequence of random vari-
ables defined on a probability space (), A, P). Then (X}) is said to
(a) converge completely to X, if for any € > 0

t

lim » Pr(|X; —X|>e¢€) < oo;
t—ro0 Py
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3 Characteristics of Hypervolume-based EMOA

(b) converge almost surely or with probability 1 to X, if
Pr(lim | X; — X|=0) = 1;
t—o0
(c) converge in probability to X, if for any € > 0
lim Pr(|X; — X| > ¢€) = 0;
t—00

(d) converge in mean to X, if
tlim E(|X:— X|) =0. O
—00

The velocity of approaching a limit is expressed by the convergence rate.

Definition 3.3 Let (Z; : k > 0) be a non-negative random sequence. The se-
quence is said to converge geometrically fast in mean (in probability, w.p. 1) to zero
if there exists a constant g > 1 such that the sequence (¢*Zy : k > 0) converges
in mean (in probability, w.p. 1) to zero. Let q* > 1 be supremum of all constants
q > 1 such that geometrically fast convergence is still guaranteed. Then ¢ = 1/q
is called the convergence rate. A sequence with geometrically fast convergence is
synonymously denoted to have a linear convergence rate. ([l

Let p(-) denote a function that measures the performance of an EA’s population
X and p* the target value. If the sequence (Zy)g>¢ defined by Z, = [p(Xy) — p*|
converges (in any mode mentioned above) to zero with a certain convergence rate,
then the EA approaches the target performance value with this rate.

For example, let p(Xj) be the best objective function value of the population at
generation k£ > 0 of a single-criterion EA and p* be the global minimum of the
objective function. If 7, converges to zero then the EA converges to the global
minimum. Similarly, let p(X}) be the dominated hypervolume of population X
and p* the maximal dominated hypervolume in the multi-objective scenario then
the population converges to the maximum dominated hypervolume if 7, — 0 as
k — oo. For the convergence analysis in the Sections|3.2.2land [3.2.3| we consider the
convergence of the population towards the Pareto front. Thereby, p(X}) denotes
the distance to a certain point on the Pareto front.

Note that we analyze algorithms w. r. t. their black-box-complexity (cf. Section,
i.e., we consider the number of function evaluations and express convergence rates
in this measure.

Convexity

Definition 3.4 A set S C R™ is said to be convex if £x+ (1 — &)y € S for all
x,y € S and £ € [0,1]. A function f : S — R is termed

(a) convex if  f(Ex+(1-¢)y) < f(x)+(1—-¢) f(y),

(b) strictly convex if  f(§x+ (1 =&)y) <&f(x)+ (1 =&) f(y),
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3.2 Convergence Rates

(c) strongly convex if

FlEx+(1-6y) S €+ (11— fy) + 2 (0 - O Ix—yI?,

(d) (K, Q)-strongly convex if it is strongly convex and

SEO=Olx—yIP SEF6)+ (1) fly) ~ flEx+(1-))
<SE0-0lx -y (310

with K,L € R*,0< K < L < oo and Q = L/K. O

Definition [3.4}(a) says that a function is convex if its epigraph (the set of points
lying on or above its graph) is convex. For convex functions any local minimum is
a global one, i.e., minima have equal function values. Strictly convex functions are
convex with a unique minimizer. Strongly convex functions are a subclass fulfilling
a tighter bound of the inequality, whereas for (K, Q)-strongly convex functions the
relation of the terms is bounded from two sides. The inequalities become more
precise with increasing values of the parameters K and L.

Finally, notice that f(-) is termed concave if — f(+) is convex.

Definition 3.5 A symmetric quadratic matrix A with eigenvalues {{v1,...,v,}}
1S

1. positive semidefinite iff v; > 0,Vi € {1,...,n}
positive definite iff v; > 0,Vi € {1,...,n}

negative semidefinite iff v; < 0,Vi € {1,...,n}

B~ Wb

negative definite iff v; < 0,Vi € {1,...,n}

5. indefinite iff 3v; < 0 and Jv; > 0, withi,j € {1,...,n}.

Theorem 3.6 (cf. e.g. |Hiriart-Urruty and Lemaréchal (2001, Th. 4.3.1)) Let f :
R™ — R be twice continuously differentiable and () denote its Hessian matrix.
Then it holds:

1. f is convex <= () is positive semidefinite
2. f is strictly convex <= () is positive definite
3. f is concave <= () is negative semidefinite

4. f is strictly concave <= () is negative definite. O]
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3 Characteristics of Hypervolume-based EMOA

Lemma 3.7 Let f1(x) =a'x+ ag and fo(x) = b x + by be linear functions with
a,b,x € R", with ag,by € R, and n > 2. The dominated hypervolume for a
fixed reference point r € R? is a concave function if the matrix ab' is negative
semidefinite. (Beume et al. (2011)*).

Proof. Notice that the dominated hypervolume

H{f(x)}r) = [ — fi(x)][r2 — fa(x)]
= [ — (a'x +ag)] [r2 — (b"x + by)]
= [(r, — ag) —a'x|[(rs — by) — b'x]
= (ry —ag) (ry — by) — [(r1 —ag) b+ (ry, —bg)a] 'x+a'x-b'x
= (r1 —ag) (ro — by) — [(r1 —ag) b+ (ry —by)a] 'x +x' (ab')x

is a quadratic form which is concave iff ab' is negative semidefinite. O]

Example: ab’ is negative semidefinite if b = —a since aa' is positive semidefinite.

Lemma is used in Section B.2.4]

Definition 3.8 A symmetric positive semidefinite matrix A has bounded band-
width k > 1 iff for all eigenvalues 11 < vy < ... < v, < oo holds: dx > 1 : Vi =
1,...,n: v; € [1n, k- 1], with k being a constant.

A function f(x) = 3x' Ax+b"x+ ¢ is denoted to have bounded bandwidth iff its
matrix A has bounded bandwidth.

Note that the bounded bandwidth cannot be fulfilled if one but not all eigenval-
ues are zero. So it can only hold for the zero matrix or positive definite matrices.
Consider a small counter example where the eigenvalues cannot be bounded by a
constant. In the diagonal matrix A the diagonal entries correspond to the eigen-
values which all are positive, so the matrix is positive definite. Then, there is no
constant x such that the interval [1, x - 1] contains the largest eigenvalue n:

A= ., {1, L,n}}€el,k-1] = 4k is a constant.

OO =
o = O
I oo

Lemma 3.9 Let f(x) = ;x' Ax + b'x + ¢ be a quadratic convex function with
bounded bandwidth, and A is not the zero matrix. Then, its matrix A is positive

definite and has bounded bandwidth.

Proof. As f is convex, it follows that A is positive semidefinite, so Vi = 1,...,n :
v; > 0. The condition 3k > 1:Vi=1,...,n:v; € [1, k- 11] of the bounded band-
width is only fulfilled if A is the zero matrix (which we exclude from consideration)
orifVi=1,...,n:1; > 0 holds, and thus A is even positive definite, which implies
that f is actually strictly convex. O]
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3.2 Convergence Rates

Algorithmical Setup

We consider the SMS-EMOA not only with the standard (u + 1)-selection but also
other schemes of the (x T \) framework. A new selection scheme with a tournament
selection based on pairwise comparisons is explained in detail in Section [3.2.3]
Several mutation operators are considered in order to calculate convergence rates,
or respectively transfer known results. We do not provide convergence rates for
recombination.

The reference point is mainly chosen following the concept of the adaptive reference
point. Recall that points that are the worst ones in the population regarding an
objective function have a distance to the adaptive reference point of exactly 1 w.r. t.
that worst objective (cf. Fig. |3.2)). This fact is exploited to gain the convergence
result described in Section 3.2.2.11

From Lemma [2.5] we know that in case of rating two points by their absolute
hypervolume, the resulting order is the same as if the points were rated by their
hypervolume contribution. We refer to this lemma to argue that both measures
behave equally in case of selecting among two points.

Algorithmic Equivalence

The following part is mainly transferred literally from [Beume et al. (2011)*.

We exploit that convergence results for one EA [...] can be transferred to an-
other in case the algorithms behave similar. Therefore, we introduce the following
definition of algorithmic equivalence:

Definition 3.10 Let (X;);>0 and (Y;)i>0 be two stochastic sequences of states
generated by two evolutionary algorithms Ax and Ay. The EA Ax and Ay are
called algorithmically equivalent if Vt > 0: X, < Y, holds for their associated state
sequences, i.e., X; and Y; have the same distribution for all t > 0. Il

In particular, two algorithms are algorithmically equivalent if both use the same
probability distribution for probabilistic decisions, and their deterministic decisions
are equal. We use the term in this way by assuming equal probabilistic operators
(initialization, variation) and showing that the deterministic selection operators
produce the same output in case of the same input for certain classes of problems.
We do not consider the computational resources of the EA operators but only the
input-output-behavior, thus the state of the EA’s population.

3.2.2 SMS-EMOA with Adaptive Reference Point
3.2.2.1 (1+1)-SMS-EMOA

We start our analysis with simple versions of algorithms and show the algorithmic
equivalence of the (1+1)-SMS-EMOA (Alg. and the (1+1)-EA (Alg.|3.3). The
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3 Characteristics of Hypervolume-based EMOA

Algorithm 3.3: (1+1)-EA for single-objective minimization

choose individual X(© € R”, set t = 0
repeat
create offspring Y® from X® by variation

1
2
3
4 evaluate offsprmg Yy ®

5 | if f(Y®) < f(X®) then /* selection */
6 ‘ X(t+1) — Y(t)

7 | else XD = X®

8 increment ¢

9

until termination criterion fulfilled

Algorithm 3.4: (1+1)-SMS-EMOA for 2-objective minimization

1 choose individual X© € R™, set t =0

2 repeat

3 create offspring Y® from X® by variation

4 evaluate offsprmg Yy ®)

5 if f(Y(t)) =< f(X®) or /* selection */

(SOYO) || F(X®) and H{F(YO)},r®) > H{F(XW)},r®)) with
r) = (max{A(XO), fi(YO)} + 1, max{f(X®), fo(Y®)} + 1)
then
‘ X+ — y(@®)
else XD = x®
increment ¢

© 0w =N o

10 until termination criterion fulfilled

algorithms actually differ only in line 5. Both algorithms initialize one individual,
create one offspring by variation from the parent individual and select the better
individual for the proceeding generation. For the algorithmic equivalence, all oper-
ators apart from the selection can be chosen arbitrarily, whereas we presume that
they are chosen to be identical for both algorithms.

The single-objective selection operator of the (1+1)-EA compares the function
values of the two individuals and keeps the offspring if its value is not worse, i.e., not
greater than the parent’s in case of minimization. The (1+1)-SMS-EMOA checks
whether the individuals’ function vectors are comparable regarding the Pareto-
dominance relation, and keeps the offspring if it weakly dominates the parent.
In case of incomparable individuals, the dominated hypervolume is invoked as a
selection criterion. First, the adaptive reference point is calculated depending on
both points. Then, the offspring is kept if its hypervolume is not worse. According
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3.2 Convergence Rates

:fl :fl

Fig. 3.2: Left: Hypervolume of the points f(x) and f(y) w.r.t. the adaptive reference
point r, with the hypervolume contributions shaded in light gray. Right: Regions
of acceptance or rejection for the sum of objectives. The 45° lines are isolines of

fe

to Lemma [2.5] this decision always corresponds to choosing the point with higher
hypervolume contribution to the set of two points.

In the following, we show that the single- and the multi-objective selection operators
perform identical decisions in case of certain objective functions. No preconditions
for the bi-objective problem are required. The single-objective problem shall be
the (evenly weighted or unweighted) sum f* of the functions of the bi-objective
problem as defined below.

Definition 3.11 For a bi-objective minimization problem f : R" — R2?,
min{ f(x) = (f1(x), f2(x)) | x € R"}, the corresponding single-objective mini-
mization problem f*:R" — R with f*(x) = f1(x) + f2(x) is named unweighted or
evenly weighted sum. O

Figure illustrates the relation of the hypervolume and the f¢. Our considera-
tions lead to the following theorem.

Theorem 3.12 The (1+1)-SMS-EMOA with adaptive reference point applied to
a bi-objective minimization problem f : R™ — R? min{f(x) = (f1(x), fo(x)) | x €
R"} is algorithmically equivalent to a (1+1)-EA applied to the minimization of the
single-objective function f* : R" — R with f*(x) = f1(x) + fo(x), presumed all
operators apart from the selection are identical in both algorithms. (Beume et al.

(2010)")

Proof. Since all operators apart from the selection are assumed to be identical
for both algorithms, only the algorithmic equivalence of the selection operators
remains to be shown. To this end, it suffices to show that for the same pair of
parent and offspring, the algorithms select the same individual for survival. This
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3 Characteristics of Hypervolume-based EMOA

equivalent behavior is proved by two implications: (1) Whenever the (1+1)-SMS-
EMOA accepts the offspring, then the (1+1)-EA accepts it as well. (2) Whenever
the (1+1)-EA accepts the offspring, the (1+1)-SMS-EMOA does so—or: whenever
the (1+1)-SMS-EMOA rejects the offspring, the (1+1)-EA does so. The proof
of the second implication is omitted since showing the latter formulation works
analogously to the proof of the first implication which is presented in detail in the
following.

For the acceptance of the offspring in the (1+1)-SMS-EMOA, we distinguish the
cases of comparable (1.a) and incomparable (1.b) individuals.

(l.a) A comparable offspring y is accepted if it weakly dominates its parent x,
ie, f(y) 2 f(x), which is shown to imply the acceptance by the (1+1)-EA, i.e.,

£ y) < f(x).
fy)2fx) & fily) < ix) A faoy) < f2(x)
= fiy) + fay) < [1(x) + fa(x)
& fy) < (x) (3.11)
(1.b) Let the offspring and the parent be incomparable, i.e., f(y) || f(x). Then the

offspring is accepted if its hypervolume value is greater than the parent’s, which is
shown to imply the acceptance by the (141)-EA as well. Since f(y) || f(x) we have

to distinguish two cases: fi1(x) > f1(y) A fa(x) < fo(y) or fi(x) < fi(y) A fa(x) >
f2(y). We consider the first case; the proof for the second one works analogously.
Let fi(x) > fi(y) A fa(x) < fao(y). According to Algorithm [3.4] the adaptive
reference point is r = (f1(x) + 1, fo(y) + 1)7. Recall that the hypervolume of a
single point v € R? with v < r (which holds for the adaptive reference point by
definition) is H({v},r) = (r1 — v1)(r2 — v2) according to Eq. (2.5)). Inserting the
reference point yields the following equations, whereas one factor reduces to 1 for
each point due to concept of the adaptive reference point.

HLF0}T) = (A1) +1 = fi(x)) (foy) +1 - L))
— foy) = fax) +1

H{ )10 = (A6 +1= A1) (L) +1- L))
— i) = Aily)+1

Due to Lemma [2.5]is does not matter whether we consider absolute or contributive
hypervolume values. In fact, the hypervolume contributions match the equations
above without the term +1. The offspring is accepted if

H{f(y)},r) > H{fx)},r) = filx)—fily)+12> foly) — fo(x) +1
& filx) = fily) = foly) = f2(x)
& fix) + f2(x) = fily) + fo(y)
& f(x) = f(y),
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and the acceptance by the (14-1)-SMS-EMOA implies the acceptance by the (1+41)-
EA as desired. The analogous proof of the other case of incomparable points com-
pletes implication (1) that whenever the (141)-SMS-EMOA accepts the offspring
so does the (141)-EA. The analogous proof of implication (2) in the other direction
closes the proof of the algorithmic equivalence of the algorithms on the specified
problems. O]

The equivalence of the (1+1)-SMS-EMOA and the (1+1)-EA as formulated in
Th. holds for all bi-objective problems and any specification of the algorithms.
For a certain class of problems and a certain variation, we show a linear convergence
rate of the algorithms to an optimal point. This can now be done easily since this
result for the (1+1)-EA already exists, which we briefly recall.

Algorithm 3.5: EA using mutation with self-adaptation

1 choose X € R™ set t =0 /* initialization */
2 choose 0 > 0,0 >0,v>1,set p,=1/5k=0

3 repeat

4 draw Z® from a multivariate standard normal distribution

5 | YO =XO 45070 /* mutation */
6

7

8

9

do selection
if Y® survived then k-+
if ¢ mod 6 # 0 then ¢+) = 5
else /* step size adaptation */
10 g =k/d, k=0
L if ¢, > p, then oY) — 5.4 else o) = g/y

12 t++
13 until termination criterion fulfilled

Let the (1+1)-EA from Alg. 3.3 be further specified by Alg. 3.5 It uses mutations
by addition of a vector drawn from a multivariate standard distribution scaled by
step size 0. The step size is controlled via self-adaptation by the so-called 1/5-rule,
with success rate p; = 1/5. Is the ratio of offspring that replaced the parent lower
than 1/5 within the observation interval 0, the step size is reduced by division
through the adaptation factor v, and otherwise increased by ~.

For the (1-+1)-EA with self-adaptation with the 1/5-rule|Jagerskiipper| (2006, Th.4)
proved the following convergence rate:

Theorem 3.13 Let f : R* — R be a quadratic function f(x) = 3x' Ax+b x+c
with positive definite matrix A with bounded bandwidth. The (1+1)-EA (Alg.
with self-adaptation as in Alg. using 6 = O(n) and ps = % halves the distance
to the optimum in expectation in O(n) iterations with overwhelming probability,
provided that 0® = ©(D/n) where D is the initial distance to the minimizer.

(Jagerskiipper (2006, Th. 4)).
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The theorem actually says that the approximation error decreases exponentially
fast and so the (1+1)-EA has a linear convergence rate toward the optimum un-
der the specified conditions. We transfer this result to the (1+1)-SMS-EMOA.
Compared to our result in Beume et al.| (2010)*, we changed the conditions of the
objective functions to have bounded bandwidth.

Corollary 3.14 The (1+41)-SMS-EMOA as in Alg. with self-adaptation as in
Alg. applied to a bi-objective minimization problem f : R* — R? approaches an
element of the Pareto front with linear order of convergence if both objective func-
tions are quadratically convex of bounded bandwidth. (cf.|Beume et al. (2010)*).

Proof. We show that under the assumed properties of the objective functions, their
sum fi(x) + fo(x) fulfills the conditions required to invoke Th. for the (1+1)-
EA. Then, thanks to the algorithmic equivalence of the (1+1)-EA and the (1+41)-
SMS-EMOA (Th. [3.12)), the convergence rate holds for the (1+1)-SMS-EMOA as
well.

The quadratic convex functions fi, fo with bounded bandwidth have matrices A, B
with bounded bandwidth due to Lemma 3.9l It remains to show that the sum of
the functions is quadratically convex with A + B of bounded bandwidth.

Let v(A) = {{a4,...,a,}} denote the eigenvalues of A labeled in ascending order,
and v(B) = {{b1,...,b,}} be defined accordingly. The so-called Rayleigh quo-
tient is enclosed by the minimal and maximal eigenvalues as vy, < XXTT—AXX < Vmax-
Therefore,

x"(A+B)x x'"Ax x'B

+
Tx xT

X <+ by (3.12)
X

b s xx X
From the bounded bandwidth of A and B follow a,, < k,-a; and b,, < ky-b;. Thus,
an + by < Kg - ay + Ky - by < max{k, + kp}(a; + b1). As A+ B is supposed to be
a non zero matrix and has bounded bandwidth, we follow that A + B is positive
definite. Thus, the sum f; + f, fulfills the condition to invoke Theorem that
guarantees linear convergence rate of the (1+1)-EA with self-adaptation for f*(x).
An optimum of the sum of the objective functions corresponds to a point on the
Pareto front, so the (1+1)-SMS-EMOA approaches the Pareto front with linear
convergence rate.

]

3.2.2.2 (1,2)-SMS-EMOA

The algorithmic equivalence of a (1,2)-SMS-EMOA to a (1,2)-EA can be shown
analogously to the case of the (1+1) selection. In the (1,2) selection, the algorithms
generate two offspring from one parent and decide which offspring replaces the
parent. Thus, the selection performs a decision among two individuals just like
in the (1+1) case. For the algorithmic equivalence of the (1+1) versions we did
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not invoke any information how the individuals have been generated, so the proof
holds for selection among any two individuals, thus also for the (1,2) selection. We
deduce the following results, retrieved from Beume et al.| (2011)*.

Theorem 3.15 The (1,2)-SMS-EMOA with adaptive reference point applied to a
bi-objective minimization problem f : R® — R? min{f(x) = (fi(x), f2(x)) | x €
R™} is algorithmically equivalent to a (1,2)-EA applied to the minimization of the
single-objective function f* : R™ — R with f*(x) = f1(x) + f2(x), presumed all
operators apart from the selection are identical in both algorithms. (Beume et al.
(2011)"). O

For the (1,2)-EA, a convergence result by Rudolph! (1997) exists, which we can now
transfer directly to the (1,2)-SMS-EMOA.

Theorem 3.16 Let the (1,2)-SMS-EMOA with adaptive reference point use vari-
ation by mutations due to a multivariate uniform distribution on the surface of a
hypersphere with radius r > 0 and self-adaptation of the step-size (i.e., the radius)
r via the 1/5-success rule (as in Alg. with & > 0, ps = %, and v > 1. Ap-
plied to a bi-objective optimization problem f : R™ — R? min{f(x) | x € R"} the
algorithm approaches an element of the Pareto front with at most linear order of
convergence if both objective functions are convex with bounded bandwidth. (cf.

Beume et al| (2011)*). O

3.2.2.3 Limitations of the Approach

The algorithmic equivalence of the (1+1)-SMS-EMOA and the (1+1)-EA optimiz-
ing the sum of the objective function does not hold for more general scenarios with
more than two objectives or populations of individuals.

Higher dimensional Problems

Theorem 3.17 The (1+1)-SMS-EMOA with adaptive reference point applied to
a multi-objective minimization problem f : R® — R min{f(x)|x € R"} is not
algorithmically equivalent to a (1+1)-EA applied to the minimization of the single-
objective function f* : R" — R with f*(x) = 3%, fi(x), presumed all operators
apart from the selection are identical in both algorithms, when d > 3. (cf.|Beume
et al.| (2010)*).

Proof. We show the theorem by a counter example with differing selection behav-
ior. Suppose there are two incomparable points f(x), f(y) € R? with f(x) =
(0,0,...,0)and f(y) = (—1,...,—1,d—1—¢€) where € € (0,1) C R. The adaptive
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reference point for the set A = {f(x), f(y)} isr = (1,...,1,d — €). The hyper-
volume contribution of each point is here simply calculated by the product of the
distances to the neighbor in each dimension:

H(f(x),A,x) = (i:[ll(n - fi(x))> (faly) = fa(x)) =d—1—¢
H(f(y), A;r) = (ﬁ(fi(x) - fz(y))) - (ra— fa(y)) = 1.

The values of the sum of objectives are
f*(x) ZZ:J%(X) ~0
fs(Y)ZZd;fi(Y) =(@d=1)-(-1)+(d-1-¢) = —c.

For d > 3, the (1+1)-SMS-EMOA accepts x due to the higher hypervolume but
the (1+1)-EA accepts y due to its lower function value, so their selections differ.
Note that the algorithms behave equivalent for the case of d = 2 with f(x) = (0, 0),
fly)=(=1,d—1—¢),and r = (1,d — €): The (14+1)-SMS-EMOA accepts y as
H(f(x),Ar)=1—e< H(f(y),Ar)=1

For d > 3 the selection according to the hypervolume contribution is not equiv-
alent to the selection according to the absolute hypervolume. However, the lat-
ter approach is no back door here as an analogous counter example indicates the
inequivalence to the selection of the (1+1)-EA (cf. Beume et al. (2010)*). Com-
pared to the example above, only the sign of € is changed in f(y), leading to
fly) =(-1,...,—-1,d—1+¢), withe € (0,1) C R, r = (1,...,1,d +¢), and
f*(y) = €. The absolute dominated hypervolume of each point is

d

H({f(x)},r) = H(n — [i(x) =1 -0 (d+e—0) —d+te

H{ b =[]0 fily) =+ 1) (dte—d+1—¢ =201

i=1

For d > 3, the (1+1)-SMS-EMOA accepts y due to the higher hypervolume but
the (14+1)-EA accepts x due to f*(x) = 0 < f*(y) = ¢, so the selections differ.
Again, the algorithms behave algorithmically equivalent for d = 2: The (1+41)-
SMS-EMOA accepts x as H({f(x)},r) =2+e¢> H{f(y)},r) = 2.

O
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Population-based SMS-EMOA

The following part is mainly transferred literally from Beume et al. (2011)*. We
show by a counter-example that the order induced by the hypervolume values of
the points is not equivalent to the order induced by the unweighted sum f*.

Theorem 3.18 The order of individuals induced by the sum of objectives f*(x) =
f1(x) + f2(x) differs from the order according to hypervolume values when the
reference point is chosen adaptively depending on more than two points.

2o11)").

>3

>3

1T 17T 1T T T T NNN > f1
10

Fig. 3.3: The adaptive reference point r = r({a,b,c}) is chosen relative to the three
points. The blue lines indicate isolines of the sum f®. The maximal and minimal
elements according to the sum do not correspond to the minimal and maximal
elements due to the hypervolume (contributions).

Proof. In order to generate corresponding selection behavior of the SMS-EMOA
and the EA, the order of hypervolume values has to be inverse to the order of
the sum of objectives. We show that contradictions already occur for bi-objective
problems with a set of three points regarding the minimal and maximal values.
Consider the set M = {a,b,c} in Figure with a = (1,7),b = (5,5),¢c =
(7,2),r(M) = (8,8).
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3 Characteristics of Hypervolume-based EMOA

The orders according to the hypervolume contribution, the absolute hypervolume,
and the sum of obectives of each point are:

H(a,M,r(M))=4 = HMb,M,r(M))=4 > H(c,M,r(M)) =3
H({b},r(M)) =9 > H({a},x(M))=7 > H({c},r(M)) =6
ffla)=8 < fi(c)=9 < f*(b) = 10.

Obviously, the orders of a, b, c differ, especially regarding the minima and maxima,
so neither the hypervolume contributions nor the absolute hypervolume values
correspond to the sum of objectives. O]

From Theorem [3.1§ it follows that the selection according to the hypervolume of
a point in the SMS-EMOA and the selection of the EA according to the sum of
objectives are in general not equivalent when the reference point depends on more
than two points. This already holds for a set of three individuals, which can occur
when the parent or the offspring population consist of more than one individual
since the orders already differ in their minimal and maximal elements.

Corollary 3.19 When the reference point of the hypervolume is chosen adaptively
depending on more than two points, then for ;1 > 1 or A > 1 the (u + \)-SMS-
EMOA and the (u+X\)-EA with the sum of objectives as fitness function, presumed
all operators apart from the selection are identical in both algorithms, are not
algorithmically equivalent; as well as the (u, A\)-SMS-EMOA and the (u, \)-EA
with A > 2. (Beume et al.| (2011)*). O

3.2.3 Population-based SMS-EMOA using Pairwise
Comparisons

Respecting the limitations of our approach of algorithmic equivalence not being
valid for the selection among a set of more than two points, we develop a new
selection concept based on pairwise comparisons. Note that we thereby deviate
from the standard selection concept of the SMS-EMOA. However, the new concept
enables us to establish algorithmic equivalence between population-based versions
of the SMS-EMOA and single-objective EA.

The selection within the SMS-EMOA is now performed based on pairwise compar-
isons in a tournament modus (cf. Alg. [3.6]). First, the individuals (parents and/or
offspring) to select among are compiled in one set. In each step, the set is divided
into pairs of individuals. Among the pairs, the individuals are compared against
their partner regarding the hypervolume w.r.t. an adaptive reference point de-
pending on that pair only. Then, the best individual can be determined as follows:
The winners of the comparisons, i.e., the individuals with higher hypervolume val-
ues are kept, the others discarded from the data structure. The remaining set of
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winners is again divided into pairs and the process proceeds iteratively until the
set of winners contains only one individual.

Algorithm 3.6: Tournament selection in set 7" with pairwise comparisons
while T'.size > 1 do

divide set T' into pairs

foreach pair (T, TY)) do

r = (maX{fl(T“ ) fl(T(”)} + 1, max{fo(TW), fo(TV)} +1)"

if f(TW) = f(TY)o

(@) f( ) and H{f(TD)},r) > H{f(TY)},1)) then
‘ discard T from T

7 else discard T from T

R W N

(=)

As shown by Lemma the absolute hypervolume values and the hypervolume
contributions result in the same ordering of two points, so the hypervolume contri-
bution could be used as well. As proved in Theorem [3.12] the order according to the
hypervolume equals the inverse order created by the sum f*, thus the tournament
selection based on pairwise comparisons is equal to the selection according to the
unweighted sum performed by a single-objective EA. So, the individual winning the
tournament regarding the pairwisely highest hypervolume values is the individual
with lowest value of the sum f°. The selection is less efficient than the normal
one but this does not effect the convergence results as these are calculated with re-
spect to the black-box complexity and the tournament does not require additional
function evaluations.

We specify different tournaments for different selection aims. For all tournaments
holds that in case of equal hypervolume values offspring are preferred over parents,
i.e., the parent loses the comparison as done by the selection of a single-objective
EA. Remaining ties are broken randomly.

Determining one best individual suffices for a (1, ) or a (1 + ) selection, with
the ranking of the remaining individuals being irrelevant. Algorithm performs
this task when called with the set of the A offspring for the first case and called
with the set of the parent and the A offspring for the latter. Thereby, we establish
algorithmic equivalence between the SMS-EMOA and a single-objective EA.
Determining one worst individual is the goal of a (u + 1) selection. The tourna-
ment is performed as described above, whereas the losing individuals proceed the
tournament and the winning individuals are discarded from the tournament.

For a (u T \) selection, the ranking of the best u, or alternatively the worst A
for the +-selection, respectively the worst A — p for the -selection have to be
determined. We know from the equivalence to the inverse order of the sum f* that
a total order is produced when all individuals are compared pairwisely against each
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3 Characteristics of Hypervolume-based EMOA

other. The best individual is the one that wins each comparison, the second best
wins each comparison but one against the best individual and so on. Thereby a
ranking establishes among the individuals and can be carved out as far as necessary
for the selection. Our argumentation leads to the following lemma of algorithmic
equivalence.

Lemma 3.20 The (u T X\)-SMS-EMOA with tournament selection using pairwise
comparisons of hypervolume values w.r. t. the adaptive reference point applied to a
bi-objective optimization problem min{ f(z) | x € R"} is algorithmically equivalent
to a single-objective (1 1 A\)-EA applied to the single-objective function f*:R" —
R with f*(x) = f1(x) + f2(x), assuming the same choice of ji, A and + or , for the
selection and the remaining operators being identical. (Beume et al| (2011)*). O

Due to the algorithmic equivalence, we are able to transfer known convergence
rates from the single-objective EA to the SMS-EMOA. The following theorems are
taken literally from Beume et al. (2011)*.

The convergence result in [Rudolphl (1997, p. 184, Th. 6.11) for the (1, A\)-EA can
directly be transcribed to the (1,A)-SMS, due to their algorithmic equivalence

(Lemma [3.20)).

Theorem 3.21 Suppose the objective functions f(x) and fa(x) lead to a (K, Q)-
strongly convex surrogate function via f*(x) = fi1(x)+ fa(x) with f* : R" — R. Let
the constant M), denote the expectation of the maximum of \ independent samples
from a Beta distribution with support (—1,1) and parameters p = q = (n — 1)/2.
Then the convergence rate of the (1,\)-SMS-EMOA, 2 < X\ < oo with adaptive
reference point, pairwise comparisons, and variation operations as described in
(Rudolph|, (1997, p. 184, Th. 6.11) is

(a) 1 — M3 if f* is quadratic, the Hessian matrix V?f*(x) is known in advance
and the length of the gradient in ellipsoid norm || - ||g2ss(x) can be determined;

(b) < 1— M2/Q%? if f* is quadratic, the Hessian matrix V2 f*(x) is known in
advance and the Euclidean length of the gradient can be determined;

(c) < 1 — M}/Q? if the largest eigenvalue of the Hessian (or constant L) is
known in advance and the Euclidean length of the gradient can be determined.
(Beume et al.| (2011)*). O

Evidently, the gradient and Hessian of the surrogate function follow from the gra-
dients and Hessians of the objective functions:

Vi (x) = V(%) + f2(x)) =V i(x) + Vfa(x)
V2 (%) = VA(fi(x) + f2(x)) = V2fi(x) + V2 fo(x).
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Due to the algorithmic equivalence (Lemmal3.20), the convergence result in Rudolph
(1997, p. 190, Th. 6.12) for the (1 4+ X)-EA can be transferred to the (1 + \)-SMS-
EMOA.

Theorem 3.22 Suppose the objective functions fi(x) and fs(x) lead to a (K, Q)-
strongly convex surrogate function via f*(x) = f1(x) + fa(x) with f*: R" — R. If
the FEuclidean length of the gradient is available for all x € R™ then the following
property holds for the (1 + \)-SMS-EMOA with 1 < A\ < oo, using the adaptive
reference point, pairwise comparisons of hypervolume values, and mutation of a
parent X; via X; + ||V f*(Xy)|| - Z where Z is a spherically distributed random
vector with support R": The algorithm converges almost surely and in mean to
the Pareto front and the mean velocity of approach is geometrically fast (i.e., linear
convergence rate) regardless of the actual choice of the distribution of Z and its
parameterization. (Beume et al.| (2011)*). O

Due to the algorithmic equivalence (Lemma [3.20)), the bounds for the (u + 1)-EA
shown by |Jagerskipper and Witt| (2005, Th. 2,3) result in the following theorem
for the (pu + 1)-SMS-EMOA.

Theorem 3.23 Suppose the objective functions f; : R® — R and f, : R - R
lead to a unimodal surrogate function f*(x) = f1(x)+ fo(x) satisfying Vx,y € R" :
|x —x*| < |y — x*| = f(x) < f(y), where x* € R" is the unique minimizer. The
(1 + 1)-SMS-EMOA, where 2 < pu = poly(n), with adaptive reference point and
pairwise comparisons of hypervolume values within the selection, optimizes such
a bi-objective optimization problem where the number of steps until the distance
to z* has been halved is Q(un) with probability 1 — 2% and also in expectation,
and O(un) w.o.p. with ¢(©) = ©(D/n), where D denotes the initial distance to the
minimizer. (cf.Beume et al| (2011)*). O

For a (1 T A)-EA no convergence rates are known for both u and A greater than
one, to the best of our knowledge. Convergence has been proven (see e.g. Rudolph
(1997, Sec. 6.3)) but that is not our focus of interest here. However, appropriate
results will hold for the SMS-EMOA accordingly.

3.2.4 SMS-EMOA with Fixed Reference Point

In contrast to the previous sections where we considered the adaptive reference
point, we here analyze the SMS-EMOA with a reference point that remains fixed
throughout the optimization process.

Theorem 3.24 The (1+1)-SMS-EMOA with fixed reference point r € R? for min-
imizing f(x) = (fi(x), f2(x))" is algorithmically equivalent to the (1+1)-EA max-
imizing the hypervolume

H{f(x)},r) = [r1 = ()] [r2 = f2(x)], (3.13)
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presumed all operators apart from the selection are identical in both algorithms.
(Beume et al.| (2011)*).

Proof. Due to the conditions of the theorem, it suffices to show the algorithmic
equivalence of the selection operators, whereas the argumentation of the proof is
analogous to Theorem [3.12] Before the start of the optimization process, fix a
reference point r € R? such that it is dominated by all possible individuals. Let
x € R™ be the current parent and y € R” the current offspring of both algorithms.
We detail that whenever the SMS-EMOA accepts the offspring, so does the EA;
omitting the analogous proof that whenever the SMS-EMOA rejects the offspring,
so does the EA.
If f(y) = f(x) holds, the SMS-EMOA accepts the offspring without hypervol-
ume calculation. Then it holds H({f(y)},r) > H({f(x)},r), which is intuitively
clear and proved in Theorem ., so y is as well accepted by the (1+1)-EA. If
f(y) || f(x), the offspring is accepted if its hypervolume contributions is larger
than the parent’s. Lemma tells us that in case of two points, the ordering of
the hypervolume contribution and the absolute hypervolume (used as fitness func-
tion in the EA) are equal. Thus the selection among incomparable individuals is
algorithmically equivalent for both algorithms which completes the proof.

m

Since the argumentation above considered the selection without further properties
of the individuals, the same result holds for the selection among any two points,
like the two offspring in a (1,2)-selection. So, the algorithmic equivalence holds
analogously for that case.

Corollary 3.25 The (1,2)-SMS-EMOA with fixed reference point v € R? for min-
imizing f(x) = (f1(x), fo(x))" is algorithmically equivalent to the (1,2)-EA that
maximizes the hypervolume H({f(x)},r) = [r1 — fi(X)] [r2 — f2(x)], presumed all
operators apart from the selection are identical in both algorithms.

We proof a new convergence rate for the single-objective (141)-EA that also holds
for the (1+1)-SMS-EMOA due to their algorithmic equivalence (Theorem [3.24)).
The following part is mainly transferred literally from |Beume et al.| (2011)* with
adapted notation.

Theorem 3.26 The (1+1)-SMS-EMOA with fixed reference point and variation
by uniform mutations on the surface of a unit hypersphere and step sizes propor-
tional to the length of the gradient maximizes the dominated hypervolume of the
linear problem

f(x)=(a"x+ag,b'x+b))" = min!, xecR"
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with convergence rate
k(x) 0.405

2

—1—
c(x) o "

where 0 < r(x) < v? and v, is the largest eigenvalue of matrix ab' provided that
ab' is negative semidefinite. (Beume et al| (2011))*).

Proof. Owing to Lemma [3.7]and the preconditions of this theorem it is guaranteed
that the |[...] hypervolume in (3.13) is a quadratic form whose Hessian matrix is
negative semidefinite with rank 1. In order to invoke Theorem for deriving a
convergence result for the (1+1)-SMS-EMOA a convergence result for the (1+1)-EA
for semidefinite quadratic forms is required. Apparently, such a result does not exist
yet. Therefore, the remainder of the this section is devoted to establish such a result
in Theorem below. Since the maximization of a concave function is identical
to minimizing a convex function the application of Theorem [3.29| completes the
proof of this theorem. O

At first, some facts from matrix theory are required.

Lemma 3.27 Let A : n xn be a symmetric and positive semidefinite matrix with
rank(A) < n.

a) The eigenvalues vy > vy > ... > v, > 0 of A are nonnegative with v, > 0
and v,, = 0.
b) The ecigenvalues of A* are v} fori=1,...,n.

c) Vx ER"\ {0} : 0=v, < EAx <y,

X

Proof. See e.g. [Magnus and Neudecker| (1999). O

Next, a probabilistic result is of essential importance.

Lemma 3.28 Ifu is an n-dimensional random vector that is uniformly distributed
on the surface of a unit hypersphere then ||u|| = 1 with probability 1 and x'u =
|x|| - B where B is a Beta random variable with support [—1, 1] and parameters

p=q=(n-1)/2

Proof. See (Rudolph| 1997, p. 22). O O

Now we are in the position to prove the desired result.

Theorem 3.29 Let f : R™ — R be a quadratic function with positive semidefinite
Hessian matrix whose rank is less than n. The (1+1)-EA with uniform mutations
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on the surface of a unit hypersphere and step sizes proportional to the length of
the gradient minimizes f(-) with position-dependent mean convergence rate

k(x) 0.405

with 0 < k(x) < v?. (Beume et al| (2011)*).

Proof. Tt suffices to consider the case f(x) = x' Ax where A is positive semidefinite
with rank(A) < n. Let s > 0 be the deterministic step size and u an n-dimensional
random vector that is uniformly distributed on the surface of a hypersphere (i.e.,
u is a random direction of unit length).

Let x € R™ be the current position of the (141)-EA. The random fitness value of
the offspring x + su is given by

f(x+su) = (x+su)A(x+su)
x'Ax + 2su'Ax + s> u’Au

= x'Ax+2s||Ax| - B+ s*u’Au (3.14)

< x'Ax +2s|Ax|| - B+ 5% -1 (3.15)
2

= j0)+ 2 9y 42 (3.16)

13}

where (3.14]) results from Lemmam - from Lemmam , and - from

setting s = v ||Ax|| /vy, with v > 0. After selection in generatlon t (indicated by
the subscript (t)), the fitness value of the selected individual is

| Axpy [|?

min{0, 2y - B + +*}
151

f(X@sny) = f(x@) +

since a positive value of 27 - B +~? would lead to a rejection of the offspring. This
in turn leads to the expected fitness value

E(f(x@n) = flxp)+ M E (min{0,2y - B ++°})
< flxe) — IAx| Cn (3.17)
1
where
Cp = —I§l>1£l{E (min{0,2y- B++°})} =~ O'i% > 0

90



3.2 Convergence Rates

for large n (see Rudolphl (1997), p. 171f.). According to Lemma inequality
(3.17) can be further processed via

Ax ) T (Ax
E(f(xes)) < flx@) - ( (t)Ll( ®) Cn
x /. A%x
— flxw) - OOl cn
14
k(X)) X /X
= f(xw)— —(t))yl 70 Cn
where r(x) € [0,77]. Since f(x) =x"Ax < v x'x
k(X)) f(X@)
E(f") < flx) = ==
k(X)) Cn
= flxw) (1 - %)
1
which proves the theorem. O

3.2.5 Other EMOA

We consider other popular EMOA to examine whether the properties of the SMS-
EMOA are outstanding. It is observed that the IBEA behaves equivalent to the
SMS-EMOA, whereas NSGA-II and SPEA2 do not reach a competitive convergence
rate. The remainder of the subsection is partly transferred literally from

(2010)*, whereas the result for (141)-IBEAyp is an addition.

IBEA

We show that a (1+1)-IBEA (see Sec. [3.1] [Zitzler and Kiinzli (2004)) selecting
according to the additive e-indicator I, (see [Zitzler et al.| (2003))) or according to
the pairwise hypervolume [ p performs equally to the (1-+1)-SMS-EMOA for two
objectives. IBEA prefers non-dominated individuals over dominated ones, so for
the case of two comparable individuals, the behavior of acceptance and rejection
is clearly equal to the one of the SMS-EMOA. For incomparable individuals, the
indicators /., or Iyp come into play, which are relative binary indicators, originally
defined on two sets of points. For two points, /., (a,b) calculates the minimal
distance ¢ by which a can be or needs to be moved in each direction in order to

weakly dominate b, given as (3.2)) in Sec. (cf. Fig. left):

I (a,b) = reréiﬂgl{w e{l,...,d}: fi(a) —e < fi(b)}.

The indicator value is negative or zero for a < b, so the smaller the better. For
two points, the fitness function as in (3.4) reduces to F(a) = —e f+(®a)l/r and
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f2 A f2 Iy 1
IHD (b, a)

S J

I, (a,b) Iup(a,b)

Iﬁ—i- (ba a) b b
> fl > fl
Fig. 3.4: IBEA’s indicator values (left) correspond to the hypervolume contributions

w.r. t. the adaptive reference point (right). The blue arrows give the Iy values
and the light gray areas the Iyp values.

F(b) = —e~le+@P)/5 wwhere we can neglect the scaling factor & for the ranking. So
actually each point is assigned the value of the other point, allocated such that a
smaller indicator value leads to a smaller fitness. Since the point with the lower
fitness is discarded, we can conclude that a point b survives if the indicator value of
point a is the greater one. This value corresponds to the hypervolume contribution
of point b (cf. Fig. , which has been shown to reduce to a distance in this
scenario. Thus we have an analogous behavior to the (1+1)-SMS-EMOA.

For our scenario of two points, Iy p reduces to the hypervolume contribution, such
that Iyp(a,b) = H(b,{a,b},r) and Igzp(b,a) = H(a,{a,b},r) (cf. Fig. [3.4),
presumed the reference point is chosen alike. With the fitness assignment analo-
gous to I, it results that a point b survives if it has greater fitness, thus if its
hypervolume contribution is larger just like in the (1+1)-SMS-EMOA.

Theorem 3.30 For bi-objective problems, the (1+1)-IBEA, as well as the (1+1)-
IBEAyp with equal reference point is algorithmically equivalent to the (1+1)-
SMS-EMOA with adaptive reference point, presumed all operators apart from the
selection being identical. (cf. Beume et al. (2010)*). O

Corollary 3.31 Theorem and Corollary hold as well for the (1+1)-
IBEA,,; as well as for the (1+1)-IBEAgp. (cf.|Beume et al| (2010)*).

NSGA-II and SPEA-2

NSGA-II (see Sec. [3.1] Deb et al| (2002a))) has been developed with a (u + )
selection, and is here considered for p = 1. The selection starts by performing
non-dominated sorting on the set of parent and offspring. If the individuals are
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accept with
probability 1/2

accept with

et probability 1/2

:fl :fl

Fig. 3.5: Left: The length of the blue lines defines the crowding distance of point b
in NSGA-II, whereas it is undefined for the boundary points a and c. Right:
Regions of acceptance, rejection, or random acceptance in case of incomparable
points for (1+1)-NSGA-II, (1+1)-SPEA2, and the simple (141)-EA ROSEA,
analyzed in Rudolph| (1998).

comparable, the dominating one is kept and the dominated one is discarded. In case
of incomparable individuals the crowding distance is invoked. It rewards individuals
with a large distance to their neighbors (cf. Fig. left), and assigns a value of
infinity to points at the boundary of the non-dominated front, i.e., those not having
a worse neighbor in at least one dimension. Here, both points are boundary points
with equal crowding distance values. Thus, one is chosen to be discarded uniformly
at random, so in case of incomparable points, each is accepted with probability 1/2
(cf. Fig. right).

This special handling of the boundary points is common for the SMS-EMOA as
well, yet the hypervolume contribution can be performed to obtain a total order
of the individuals. In contrast, the crowding distance is not defined for boundary
points. Analogously to the hypervolume, a reference point could be defined as a
stand-in for the missing neighbors. Yet, even with this idea there seems to be no
reasonable definition that fits into the concept of the crowding distance and repairs
its drawbacks. However the measure bases on Manhattan distances between the
points, the values for two points will always be equal as the distance is symmetric.

The same result holds for the (1+1)-SPEA2 (see Sec. [3.1] [Zitzler et al](2002)). For
incomparable individuals, there are neither dominated nor dominating ones, thus
the raw fitness of both individuals is zero. So, the secondary indicator based on
a k-nearest neighbor method is used. The resulting values for the individuals are
equal since they both are their only neighbors and distances are symmetric.

We declare that both NSGA-II and SPEA-2 in their (1+1) version are algorithmi-
cally equivalent to the (141)-EMOA termed ROSEA (Random Objective Selection
EA) in Algorithm [3.7, which has been analyzed by Rudolphl (1998) and is based
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Algorithm 3.7: ROSEA
1 choose X € R™ set t =0

2 repeat

s | draw Z® from U[0S,(1)] /* mutation */
o | 00 =1 min {11~ w)VAXO) + wV LX)

s | vy = x0 40 z0

6 | draw i with Pr(i=1)=Pr(i=2)=3 /* choose objective i */
7 | if f;(Y®) < £i(X®D) then /* selection acc. to objective i */
8 ‘ X 1) — y ()

9 | else XD =x®

10 increment ¢

11 until termination criterion fulfilled

on the framework proposed by |[Kursawe (1991). ROSEA chooses uniformly at ran-
dom one fitness function for selection (line 6). The better individual regarding the
function is kept, the other one discarded. Two incomparable individuals have both
worst and best values in interchanged functions. So, choosing a function is equiv-
alent to choosing the preferred individual. This results in the following theorem.

Theorem 3.32 The (1+1)-NSGA-II and the (1+1)-SPEA2 are algorithmically
equivalent to the (1+1)-ROSEA, assuming all operators apart from the selection
being identical. (Beume et al| (2010)*). O

Since Rudolph! (1998)) proves that for ROSEA convergence is given but only with
a sub-linear rate for at least one instance from the problem class, we immediately
get the following result.

Corollary 3.33 The (1+1)-NSGA-II and the (1+1)-SPEA2 have sub-linear con-
vergence rate under conditions for the step sizes given in|Rudolph (1998), i.e., with
D, denoting the distance to Pareto set at step t > 0, it holds D, — 0 in mean and
with probability 1, and even E (D) < ¢;- E(D;) with ¢, — 0 ast — oco. (Beume
et al| (2010)*). O

It is still unclear how this step size rule can be realized in practice and, thus,
whether NSGA-II and SPEA2 converge at all for any other known mutation oper-
ator. Nevertheless, our result indicates that sub-linear convergence might be the
best one can hope for.

3.2.6 Conclusions

This work compasses a substantial progress of the convergence analysis of state-of-
the-art EMOA. Due to a new proof mechanism of showing the algorithmic equiva-
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lence between single- and multi-objective EA, we are able to transfer convergence
results from the single- to the multi-objective case. We gain convergence rates
for state-of-the-art EMOA, mainly the SMS-EMOA, for bi-objective continuous
problems.

We proved the following algorithmic equivalences of the SMS-EMOA applied to any
bi-objective minimization problem and a single-objective EA, where the operators
apart from the selection are arbitrary but assumed to be equal for both algorithms.

e The SMS-EMOA with adaptive reference point and pairwise selection is al-
gorithmically equivalent to the single-objective KA minimizing the sum of
objectives f* with the same selection scheme for all cases of a (1 \) selec-
tion. For a (14 1) or (1,2) selection, the pairwise selection equals the normal
selection as it is performed on a set of size 2.

e The (1+1)-SMS-EMOA with fixed reference point is algorithmically equiva-
lent to the (1+1)-EA maximizing the hypervolume.

It is remarkable that the algorithmic equivalence holds for any bi-objective prob-
lem. Thereby, any future insight gained for the single-objective EA on a function
class containing the fitness function f¢ automatically holds for the corresponding
SMS-EMOA as well. It is an exceptional observation that two algorithms with
different operators, different computational complexity and different behavior for
other cases, behave identical in this bi-objective scenario.

The concept of pairwise tournament selection has been developed to establish al-
gorithmic equivalence. It is not recommended to become a standard operator in
the SMS-EMOA, since the behavior of the selection according to a weighted sum
is equipped with the known drawbacks of simple a priori techniques, e.g. in case of
concave functions only points of the boundary of the Pareto front are optimal.

The following convergence rates hold for the SMS-EMOA with a certain variation
operator applied to a bi-objective minimization problem of a certain class as well
as for the algorithmically equivalent single-objective EA.

e For variation by mutation on a hypersphere with self-adaptation by the 1/5-
rule, and problems with both objective functions being quadratically convex
of bounded bandwidth, the convergence rate of the SMS-EMOA with adap-
tive reference point and selection as (1+1) or (1,2) is linear.

e For mutation as specified by Rudolph (1997) and problems with (K,Q)-
strongly convex functions, several bounds for the convergence rates of the
(1, A\)-SMS-EMOA with adaptive reference point and pairwise selection are
given.

e For mutation as specified by Rudolph| (1997) and problems with (K,Q)-
strongly convex functions, the (1 + A)-SMS-EMOA with adaptive reference
point and pairwise selection has linear convergence rate.
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3 Characteristics of Hypervolume-based EMOA

e For the (u + 1)-SMS-EMOA with adaptive reference point and pairwise se-
lection on certain problems where f® is unimodal with a unique optimizer, a
lower bound Q(un) and an upper bound O(un) are proven conditionally for
halving the initial distance to the optimum.

e For variation by mutation on a hypersphere and certain linear problems,
a position-dependent convergence rate is shown for the (1+1)-SMS-EMOA
with fixed reference point. Having proved the algorithmic equivalence to the
(1+1)-EA maximizing the hypervolume, the analysis is performed for the
single-objective case, where a convergence rate was not known before for the
(1+1)-EA in this scenario.

For the first time a linear convergence rate was proved for EMOA that do not use
an explicit weighting of objectives. As visible by the algorithmic equivalence of
the hypervolume and the (unweighted or equally weighted) sum, the hypervolume
realizes a kind of implicit weighting for the case of two points and the adaptive
reference point.

The approach of establishing algorithmic equivalence of the hypervolume selection
and the selection according to f* has the following limitations as shown by counter-
examples.

e The equivalence of the (1+1)-SMS-EMOA with adaptive reference point to a
single-objective EA minimizing f* does not hold for more than 2 objectives.
Nevertheless, other fitting substitute functions may exist.

e The selection of the SMS-EMOA among a set of more than 2 points is not
equivalent to the selection of a single-objective EA w.r.t. f*. This result
motivates the concept of the pairwise selection, to reestablish the selection
among 2 points.

Apart from the SMS-EMOA, we proved results for NSGA-II, SPEA2 and IBEA.

e The (141)-IBEA with selection according to the additive e-indicator I.; or
the pairwise hypervolume Iyp performs equally to the (1+1)-SMS-EMOA
for two objectives. So the results of algorithmic equivalence and convergence
rates hold for this algorithm accordingly.

e The (1+1)-NSGA-II and the (1+1)-SPEA2 have a sub-linear convergence rate
on the considered class of functions since their selection mechanism among
incomparable individuals degenerates to random choice in case of 2 points.

With our presented proof techniques more results may be gained, and we do not
guarantee completeness. Our results shall be considered as prototypic and more
may follow alike.
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For future work on convergence properties, the analysis of multi-objective problems
with more than two objectives is interesting. This section demonstrated that the
very simple function f* behaves equally to the hypervolume in certain scenarios. As
the hypervolume is complex, this motivates to look for other simple measures that
may replace the hypervolume in specific scenarios i.e., share the positive properties
of the hypervolume w.r.t. the dominance relation. Other surrogate functions may
be found to establish the algorithmic equivalence of single- and multiobjective EA.
Thereby, the concept of pairwise selection is a help, but it is desired to become
obsolete. The results for the SMS-EMOA with a fixed reference point shall be
extended. An aspirational goal is the analysis of the original SMS-EMOA with the
(1 + 1)-selection and the adaptive reference point. The analysis could be enhanced
to include other multi-objective optimization algorithms.

More general, it is desirable to transfer results of single-objective EA to the multi-
objective case. More techniques like our one shall help to bridge the gap between
the theory on these algorithm classes and to catch up with the lead of the single-
objective case.
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3 Characteristics of Hypervolume-based EMOA

3.3 Optimality of Steady-State-Selection

The previous section dealt with the convergence speed of the SMS-EMOA towards
the Pareto front. To take a different point of view, we here consider the optimiza-
tion of the population’s quality on the Pareto front of bi-objective problems, i.e.,
the situation when the population already consists of Pareto-optimal points. The
results are taken from our publication Beume et al. (2009b)* and so are all blue
indicated literal citations of this subsection, whereas the notation is adapted to
this document.

The SMS-EMOA has been developed with a (u + 1)-section scheme, so only one
individual is exchanged in the population per iteration. This selection scheme is
called steady-state selection or 1-greedy selection in this context. The question arises
whether these small changes suffice to reach a global optimum of the population’s
quality and escape from locally optimal compositions. As the SMS-EMOA seeks
to optimize the hypervolume, the natural question is whether it succeeds, so the
population’s quality is measured regarding the hypervolume. An improvement of
the hypervolume is in continuous spaces always possible as long as there are points
dominating a population member, assuming that these points can be sampled with
positive probability. Note that regarding continuous spaces the Pareto front is
practically unreachable.

In contrast to the default selection scheme using the adaptive reference point, the
reference point is here fixed throughout the optimization process. This is motivated
by the assumption that the reference point does not change very much—at least
not in magnitudes—when the population is already situated on the Pareto front.
The fixed reference point is chosen as if it was the adaptive reference point w.r.t.
the boundary points of the Pareto front. Thereby, the global optimum of the
population’s hypervolume is well-defined for a fixed population size and we can
consider the process of approaching it.

Related work on this topic took a worst-case perception by providing counter-
examples indicating that certain algorithms cannot reach the global optimum in
general. Knowing that counter-examples exist is of theoretical interest, whereas
we are interested in when these counter-examples occur and whether they occur
in practice. So, we take a more practical perspective by case-related analysis of
certain classes of functions.

The next Section details the related work and gives basic definitions. Our
starting point in Section is a counter-example from literature indicating that
a (2 + 1) selection according to the hypervolume gets stuck in a local optimum.
To relativize its artificial properties, we transform the example from a discrete
to a two-part continuous Pareto front while maintaining its essential properties,
analyze it theoretically and study experimentally whether the global optimum is
attainable for algorithms exchanging more than one individual. It is revealed that
it is also difficult for these algorithms to reach the global optimum due to strong
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local attractors. In Section [3.3.3| we analyze and experimentally study simpler
shaped connected Pareto fronts. For linear Pareto fronts, it is proved that a 1-
greedy hypervolume selection suffices to reach the global optimum from any starting
configuration. Experiments on Pareto fronts of different curvature allude that the
problems are solvable to optimality with a 1-greedy hypervolume selection. Our
results are summarized and discussed in Section [3.3.4]

3.3.1 Preliminaries
Related work

Bringmann and Friedrich (2011) denote EMOA as ineffective in case there exists
a start population from which a set with maximal hypervolume cannot be reached
throughout the optimization process. The maximal hypervolume seems to be con-
sidered w.r.t. a fixed reference point.

Further, they distinguish among hypervolume-based non-decreasing EMOA which
select such that the population’s hypervolume w.r.t. a fixed reference point never
decreases compared to the preceding generation, and locally optimal EMOA whereas
the next population is chosen such that a somehow local hypervolume value is max-
imal, e.g. w.r.t. the adaptive reference point like in the SMS-EMOA.

Trivially, (i + A)-EMOA with A > pu are effective, assuming they can sample the
optimal set with positive probability, as proven in (Bringmann and Friedrich, 2011,
Th. 3.4) for locally optimal EMOA and in (Zitzler et al., 2010, Th. 4.4) for non-
decreasing ones.

Zitzler et al| (2010, Cor. 4.6) show by an extreme counter example that non-
decreasing (u + 1)-EMOA are not effective in general, respectively not 1-greedy as
they call it. Bringmann and Friedrich (2011 Th. 3.5) prove that all non-decreasing
(1 + A)-EMOA with A < p are ineffective.

Moreover Bringmann and Friedrich| (2011]) give approximation results, saying that
(n+A)-EMOA with A\ < p can always find a population of at least half the optimal
hypervolume, and no hypervolume-based EMOA can always achieve a population’s
hypervolume greater than 1/(140.1338(1/A—1/p)) times the optimal hypervolume.

Basic Definitions

Definition 3.34 |Zitzler et al| (2010) denote a preference relation as k-greedy if

1. for any given set, there exists a finite number of iterations resulting in the
optimal set regarding the preference relation, and

2. there is a sequence of improving populations per iteration when exchanging
k elements of a population at most.
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We examine the hypervolume maximization in the sense of such a preference rela-
tion, so that the population with the best hypervolume is preferred. We transfer
the definition to hypervolume-based EMOA and multiobjective problems.

Definition 3.35 We denote a hypervolume-based EMOA as k-greedy if it per-
forms a (u + k)-selection, where in each generation the population is chosen such
that the population’s hypervolume is maximal w.r.t. a specified fixed reference
point.

So, from the set of size u + k, the subset of size p with the highest hypervolume
among all those subsets is chosen. In our scenario, the considered EMOA are non-
decreasing (in the context of the definitions by Bringmann and Friedrich| (2011)))
because the reference point is fixed throughout the optimization and so is the
optimization goal, in contrast to the locally optimal SMS-EMOA with adaptive
reference point. Due to Bringmann and Friedrich (2011) all non-decreasing EMOA
are ineffective, which means that a counter example exist for any (@ + \)-EMOA
with A < p. Yet, we analyze these EMOA on certain classes of functions to further
understand when these failures occur.

Definition 3.36 A problem is denoted as k-greedy solvable if for any initial pop-
ulation, there exists a finite number of iterations of a k-greedy EMOA resulting
in the optimal set, i.e., the set of size y with maximal hypervolume w.r.t. the
specified fixed reference point.

Note that [...| any problem is p-greedy solvable for a (u+ k)-EMOA with k >
assuming that all search points are sampled with positive probability. The com-
position of sets maximizing the hypervolume among all sets of fixed size has been
analyzed by |Auger et al.| (2009a}, [2010) as optimal p-distributions. To further ex-
amine the potential of small changes, we define a more restricted scenario.

Definition 3.37 A problem is denoted as locally k-greedy solvable if it is k-greedy
solvable by exchanging each individual only with a neighboring one, in the sense
that their distance in the search space is small.

For the problems we consider, a small distance in the search space (realized by a
small step size) implies a small distance in the objective space. Analogously, an
EMOA is locally k-greedy if its variations performs small changes as defined above.
Due to the (p + 1)-selection of the SMS-EMOA we focus on 1-greediness.

Test Functions

For the experimental investigation, we compiled the following set of academic test
functions. The functions T1-T4 have either a convex or a concave Pareto front.

Note that T1 and T4 describe the same Pareto front. Test function T5 changes
its curvature from concave to convex, while still being connected and continuously
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differentiable. T6 is the continuous conversion of the counter example from Zitzler
et al.| (2010)) described in detail in Sec. It is multi-modal with respect to
the hypervolume of the population. The search space is restricted to one decision
variable z as x € [0, 1] for T1-T5 and T7, and = € [1,7] for T6. For all functions

but

T7 the domain is restricted such that all points are Pareto-optimal. The

Pareto front of T7 consist of five convex parts and is chosen as an example of
a highly disconnected one. For the experiments on T1-T5 and T7, the reference
point applied in the selection of the EMOA is fixed to r = (2,2)7, for T6 it is

T1:
T2:
T3:
T4:
T5:

T6:

— (10,7)7.

filz) =22, fo=(1-x)2 Schaffer, |Schaffer| (1985)), convex
file)=z, fo=1—-x DTLZ1, |Deb et al. (2002b), convex
fi(z) = sin((7w/2)x), fo = cos((mw/2)x) DTLZ2, Deb et al. (2002b), concave
filr) =2, folz)=(1—zY) a=2 convex
fi(z) =z, (r) = (1 -2/ o =3x/2+1/2 concave-convex
fi(z) =z, { Uﬁfi; 1 i;g

file) =z, fo(z) =1—/z —x-sin(107z) ZDT3, [Zitzler et al. (2000)

T7:

3.3.

2 Understanding a Counter Example

Discrete Counter Example

Fig.

3.6: Counter example for a non-decreasing (2-+1)-EMOA with hypervolume-based
selection. Points ¢ and d are optimal but a population initialized with a and b
cannot escape this local optimum.

Zitzler et al. (2010, Cor. 4.6) proved that, in general, a 1-greedy EMOA is not able
to obtain the set which covers the maximal dominated hypervolume. They showed
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Fig. 3.7: The counter example does not hold for the adaptive reference point. Left: The
maximal value is attained by H({a,d},r({a,d})). Right: Transition graph of
the sets of size 2 towards the global optimum {a,d}. The arrows indicate the
exchange of 1 point.

this by a counter example in a two-dimensional objective space with a Pareto front
consisting of the four points a, b, c,d and a fixed reference point r as reproduced
in Fig. 3.6l The algorithm shall optimize the distribution of a population of two
individuals, so using a (2+41)-selection. When the population is initialized with the
two points a and b (with H({a,b},r) = 25), the global optimum formed by the
points ¢ and d (with H({c,d},r) = 26) is unreachable for a 1-greedy EMOA. Any
combination of either a or b with a different point (sets {a, c}, {a,d}, {b,c}, {b,d})
leads to a worse hypervolume value and is therefore not accepted. Thus, the set
{a, b} is a local maximum of the population’s hypervolume. The example can easily
be extended to a higher number of objectives by choosing all additional coordinates
as 1, since multiplying by 1 does not change the hypervolume values.

Note which aspects are necessary to make the problem hard: The reference point
is chosen such that the objective values are weighted asymmetrically. Thus, the
points on the right have a high hypervolume contribution though being quite close
to each other. Furthermore, the second coordinate of the point a is positioned close
enough to the reference point to avoid an optimal distribution which includes this
point.

The counter example does not apply when selecting according the hypervolume
using the adaptive reference point, since the hypervolume optimization becomes
dynamic. The highest hypervolume is then achieved by H({a,d},r) = 12 (Fig.|3.7|,
left). There is no local optimum and the optimal set is reachable from any starting
configuration as illustrated in Fig. [3.7] right. The arrows indicate transitions from
one population to a non-inferior successive set by exchanging one individual.
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A A
2 e Pt .
7 ®) 7 X @)
6o, &—( 6o &— | ‘
7] 1 ha,l($2)
3 c 3 C .\k ha,'r(x2)
2 — b 2 — b
1 d 1 4°®
T T T T T T T T TN T T T T T T T T 1>/
1 5 6 7 8 10 1 5 6 7 8 10

Fig. 3.8: Left: Conversion of the discrete pathological example for 1-greedy EMOA to the
continuous space with a disconnected Pareto front of two linear segments (T6).
Still the points ¢ and d are optimal, whereas a and b form a local optimum.
Right: Dissection of the hypervolume for one point fixed at a and one moving
on either the left (ha;) or the right (ha,) line (case (1) in the proof of Th. [3.38).

Counter Example Transformed to Continuous Space

The discrete example described above may easily be extended to the (piecewise)
continuous case by connecting the points of the original configuration by two line
segments as shown in Fig. defined as function T6 (Sec. . The slope of
the right segment results in my = —1 and for the left one m; = —1/8 is chosen,
to correctly transfer the situation of the discrete case in terms of the optimality
properties of the different point distributions. For m; < —0.2, point a is no longer
part of a local optimum and the basin of attraction is shifted to the right. For
reasons of simplification, we further on discuss the problem as a two-dimensional
parameter optimization problem in the objective space, whose parameters are the
two first (or z-) coordinates of the two search points on the Pareto front. A
population is then denoted as x = (1, x2), and e.g. the global maximum as x =
(5,7) or x = (7,5), and the local maximum as x = (1,6) or x = (6, 1).

T6 is not 1-greedy solvable

Theorem 3.38 The function T6 is not 1-greedy solvable for the 1-greedy (2+1)-
EMOA with selection due to non-decreasing hypervolume w.r. t. the fixed reference
point r = (10, 7). (Beume et al.| (2009b)*).

Proof. We prove that the set {a, b} with hypervolume H({a,b},r) = 25 is indeed
a local optimum for the considered selection scheme so that a population x = (1, 6)
cannot reach the global optimum x = (5,7) of hypervolume H({c,d},r) = 26.
Exchanging x; and x5 yields the same result. Let x = (1,6) denote the population,
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then we consider the two cases that either z; = 1 remains fixed and x5 changes, or
o = 6 is fixed and z; changes.

(1) Let 21 = 1. The hypervolume of the population can be calculated as the
hypervolume H({a},r) = 9 dominated by a plus the hypervolume contribution of
the point at x5. The point at x5 can be positioned either on the left or right line
(Fig. , right). For x5 on the left line segment, the function

4 2 11 1
hai(xs) = (10 — 29) (6_ (_@+_9)) _ _@+ z2 10

8 8 8 8 8

gives its hypervolume contribution. Standard calculus obtains an optimum of the
negative parabola at xo = %, which is beyond the domain of the line. With x5 at
the right boundary of the line, the total hypervolume is still below 13, so smaller
than 25. For z5 on the right line, the hypervolume contribution is

har(29) = (10 — 23) (6 — (=22 + 8)) = —a5 + 1225 — 20.

The maximum is at x5 = 6, so there is no better second point than b.

(2) Let x5 = 6. For the point at x;, we distinguish the three cases that the point
is on the left line, or on the right line left or right from b. For x; on the left line,
the total hypervolume is the hypervolume dominated by b (H ({b},r)=20) and the
contribution of the point at x; given by

1 49 ZL‘% 1 42
h = — — —_—— —_— —_ ——— — — I
b,l(xl) (6 131) (7 ( 8 -+ 8 >) 8 8 + 8

with a maximum at x; = —% outside the domain. The best valid point is a with
a total hypervolume of 25. The two cases of x; on right line are handled together
by a function calculating the hypervolume of two points as their bounding box
through the reference point minus a small rectangle with the points as diagonal
corners, which is a square due to the right line’s slope of —1:

by (u,v) = (10 —u) (7T — (=v +8)) — (v —u)* = —u®* —v* +uv +u+ 10v — 10
assuming v < v. For x; < 6, respectively x; > 6 this leads to
by, (71,6) = —27 + 7oy + 14 and hy,(6,71) = —23 + 1621 — 40

with the maximum values at

arg max(hp . (21,6)) = 5 and argmax(hp,(6,71)) =8

outside the domain, and with corresponding largest attainable values hy, (5, 6) = 24
and hy,(6,7) = 23 smaller than 25.

Consequently, there is no 1-greedy move from z = (1,6)" resulting in at least the
same hypervolume value of 25. [
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Fig. 3.9: Hypervolume landscapes for a set of two individuals on the disconnected Pareto
front of T6 (left) or T7 (right). For T6, there is no improving line-search step
from the local optimum at (1,6) to the global optimum at (5,7).

Hypervolume Landscape

In the sense of parameter optimization, one may speak of multi-modality, and the
property of 1-greediness translates to the possibility to execute a successful line
search parallel to the coordinate axes. Thus, we can have multi-modality while
still being able to do a successful step out of a local optimum by moving in parallel
to one of the coordinate axes towards a better point. This especially is the case for
multi-modal but separable hypervolume landscapes, such as shown for the problem
T7 in the right plot of Fig. [3.9] where it is often necessary to cross large areas of
worse values, so that the function is not local 1-greedy solvable. The hypervolume
landscape of problem T6 is depicted in the left plot of Fig.[3.9] The contour lines
indicate that a 1-greedy EMOA is not able to leave the local optimum. A p-greedy
scheme would not encounter this principal difficulty as it allows for steps in any
direction. However, it also faces the problem of locating a good area, which may
be also difficult. The function T6 is studied in the following experiment.

Experiment: How y-greedy solvable is T67

Pre-experimental planning We consider a 1-greedy and a u-greedy single-objec-
tive EA moving on the Pareto front only (resembling SMS-EMOA for example). So,
the search space is the Pareto set and the EA directly maximize the hypervolume
value of the population. A (1,5)- and a (5,10)-CMA-ES are added to the set of
algorithms. These do not have existing EMOA counterparts, but shall be tested
to see if moving with even more degrees of freedom (non-elitist selection and a
surplus of offspring) pays off. In our first runs, we observed that the standard
set of termination criteria as well as standard boundary treatment (by quadratic
penalties) deteriorate the performance of the CMA-ES. The termination criteria
make it stop too early, when there is still a good chance to obtain the optimal
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solution of x = (5,7), and the boundary treatment hinders coming near to it. Both
have been switched off hereafter.

Task We compare the algorithms and expect that the p-greedy EA performs
significantly better than the 1-greedy EA in terms of success rates.

Setup All four algorithms are run 100 times per initial mutation step size (0.1
and 0.5) being the only free parameter, which is only adapted by the CMA-ES.
Up to 5000 evaluations are allowed and a minimum hypervolume value of 25.9 is
regarded as success. The start points are scattered uniformly at random over the
allowed domain (1 to 7).

Results The results are given in Table [3.1] by means of success rates.

Tab. 3.1: Success rates (per 100 repeats) of different EA types for converging against the
distribution of two points with globally maximal hypervolume.

Step Size | 1-greedy EA  pu-greedy EA  (1,5)-CMA-ES (5,10)-CMA-ES
0.1 12% 15% 55% 100%
0.5 15% 13% 61% 100%

Observations Table|3.1]documents that the 1-greedy EA indeed fails, but so also
does the p-greedy EA. The CMA-ES solves the problem in more than half of the
runs. The effective run length (until stagnation) is very short for the 1-greedy
and p-greedy EA, usually below 1000 evaluations. The CMA-ES often takes much
longer. At the same time, it can be observed that it pushes the internally adapted
mutation step sizes to very high values.

Discussion The most surprising fact is surely that also the p-greedy EA fails.
It seems that the small basin of the global optimum is hard to find, even if it is
possible to move there. A larger mutation step size could help in jumping out of the
vicinity of the local optimum, but it also scatters search steps over a larger area.
Furthermore, the attractor at (1,6) is much stronger than expected. Most runs
end here, even if started at far distant points. The CMA-ES uses a very interesting
strategy by enlarging the mutation rates. It is finally able to generate offspring over
the whole domain of the problem, thereby degenerating (by learning) to a random
search. Presumably, this is necessary to hinder premature convergence to the point
x9 = 6. Eventually, some points are placed in the vicinity of the global optimum.
Therefore, increasing the number of evaluations most likely leads to higher success
rates.
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From the in-run distribution of the individuals, it is clear that the (5, 10)-CMA-ES
manages to place some of the 5 individuals in each basin of attraction after some
generations. Thus, it approximates the global optimum quite well. However, a
population of more than one parent would translate back to a multi-population
EMOA.

Summarizing, it shall be stated that although the function is of course p-greedy
solvable, p-greedy EA without additional features like step-size adaptation have
roughly the same chance of getting to the global optimum as 1-greedy EA. Note
that the same applies to the original discrete example presented by
(2010), where, however, a much lower number of points to jump to exists. This
means that, where the discrete example does not pose a problem to a p-greedy
scheme, the continuous one does.

Generalizations of the Counter Example

The provided example of a non 1-greedy function is fragile: Moving the reference
point from r = (10,7)" towards symmetry makes it 1-greedy solvable again. Also
note that the whole construction breaks down when increasing the population size.
Experimental tests with EMOA using a population with size y = 3 show that the
optimal distribution x = (1,5,7) will always be obtained, regardless of the chosen
method (1-greedy or p-greedy).

Continuing this line of thought, it is of course possible to build a problem that
is also misleading for 1-greedy algorithms with population sizes of three. In fact,
reducing the sizes of the basins of attraction in the hypervolume landscape would
be a move towards this goal (see Fig. |3.9). However, such a problem will also
become increasingly difficult for a p-greedy algorithm.

Conjecture 3.39 Continuously defined functions, which are not 1-greedy solvable
for large population sizes (u > 3) are not generally considerably easier for pi-greedy
algorithms.

One may however pose the question if these non 1-greedy solvable functions have
to be defined piecewise. From Fig. [3.9] we may deduct that piecewise definition
here is just a matter of construction and not a necessary condition. There is no
reason withstanding creation of a continuous and even continuously differentiable
non l-greedy solvable function (so that the boundaries between pieces become flat)
except that its analytical formulation may be much more complicated. Remember
that, for non 1-greedy solvability, we only have to establish that from one point,
line searches in all dimensions fail. This leads us to the following conjecture:

Conjecture 3.40 Non I-greedy solvable, continuously differentiable functions can
be constructed for any finite population size.
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3.3.3 Continuously Differentiable Pareto Fronts

This section analyzes the convergence of 1-greedy EMOA to the distribution max-
imizing the hypervolume for two special cases in the first part. Afterwards, the
properties of 1-greedy EMOA on differently shaped Pareto fronts are experimen-
tally studied.

3.3.3.1 Theoretical Analysis

Let f: R? — R? be a bi-objective function to be minimized. We assume that the
Pareto front f(X*) associated with the Pareto set X* C R? is a Jordan arc with
parametric representation

f(X*):{(W&;) :sE[O,l]CR}, (3.18)

where v : [0,1] — R is twice continuously differentiable. Let y™M, ... y® ¢
f(X*) be distinct objective vectors on the Pareto front. According to (3.18)),
we have y) = (s;,7(s;))" for i = 1,...,u. The hypervolume of the points

yM, ..., y® is given by (cf. Eq. (2.6))

m
H(s,x) = (r1—s1)[r2 —7(s1)] + Z(Tl = 5i) [v(si-1) = (i) ], (3.19)

i=2
w.r.t. the reference point r = (ry,79)" with 0 < 57 < 55 <--- <5, <1 <7 and

ro > (0).

Whenever the hypervolume function is concave (cf. Def. , the 1-greedy selec-
tion scheme of the SMS-EMOA with fixed reference point and a population of
individuals on a continuous front will not get stuck prematurely since it is suffi-
cient to move a single variable s; at each iteration towards ascending values of the
hypervolume in order to reach its maximum. Furthermore, we are going to use
the result that a twice differentiable function is concave if and only if its Hessian
matrix is negative semidefinite (cf. Def. [3.6)). Partial differentiation of leads
to

%iﬂ = y(s1) =12+ (51— 52) 7 (51)
%{:r) = (si) = v(sim1) + (si — si41) 7' (s2) (=2...,p-1)
%ﬁ = Y(su) = (su-1) + (r1 = 5.) ¥ (s)
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and finally to

% = —7(si-1) (t=2,...,p)
PRI~ 2o/ + o1 = su) (50 (=110
CHeD — s (=11

with s,41 := 7. Other second partial derivatives are zero. Thus, the Hessian

matrix V2H (s, r) of the hypervolume as given in ([3.19) is a tridiagonal matrix.

Linear Pareto Front

Suppose that v(s) = ms + b is a linear function. Then, ~(-) is strongly monotone
decreasing with 7/(s) = m < 0 and 7”(s) = 0 for all s € (0,1). In this case,
the Hessian matrix reduces to a tridiagonal matrix with identical diagonal entries
2m < 0 and identical off-diagonal entries —m > 0. Recall that a square matrix A
is weakly diagonal dominant if [a;| > >°.; |a;;| for all i and that a weakly diagonal
dominant matrix is negative definite if all diagonal entries are negative. It is easily
seen that these conditions are fulfilled. As a result, we have proven:

Theorem 3.41 Ifthe Pareto front of a bi-objective minimization problem is linear,
then the |[...| hypervolume of ;v distinct points on the Pareto front is a strictly
concave function. (Beume et al| (2009b)* ). O

From this result, we can deduce that it is sufficient to move a single point at a
time for reaching the maximal hypervolume value in the limit. Next, we try to
generalize this result.

Convex Pareto Front

Suppose that v(-) is a convex function. Then, () is strongly monotone decreasing
with 4/(s) < 0 and ~”(s) > 0 for all s € (0,1). Again, the Hessian matrix is
tridiagonal, but the criterion of diagonal dominance of the Hessian does not always
hold. Actually, the Hessian is not negative semidefinite in general. This is easily
seen from a counter-example: Let y(s) = (1 — /s)? (T4, a = 2) with 7/(s) =
1—1/y/s <0and~"(s) = %5‘3 > ( for s € (0,1) and reference point r = (1,1)".
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Consider three points on the Pareto front with s1 = (55)%, s2 = (53)%, s3 = (37)?
leading to the Hessian matrix

1857
- 9 0
2 _ 326392 1
V H(s,r) = 9 3024819 19 ’
0 1 2461
19 16000

whose leading principal minors are A; < 0, Ay < 0 and A3 > 0 indicating that
the Hessian matrix with this particular choice of points sq, o, s3 is not negatively
semidefinite. On the other hand, if s = (ﬁ, }l, g)T, it is easily verified that A; < 0,
Ay > 0 and Az < 0 indicating that the Hessian matrix is negatively definite in this

particular case. In summary, the Hessian matrix is indefinite and we have proven:

Theorem 3.42 If the Pareto front of a bi-objective minimization problem is con-
vex, then the [...] hypervolume of u distinct points on the Pareto front is not a
concave function in general. (Beume et al| (2009b)*). O

However, this result does imply neither that there are no convex fronts with con-
cave hypervolume nor that the 1-greedy selection scheme of the SMS-EMOA gets
necessarily stuck on convex fronts.

3.3.3.2 Experimental Analysis on Connected Pareto fronts

It is experimentally analyzed whether the 1-greedy SMS-EMOA can robustly obtain
the hypervolume-optimal distribution of points for the approximation of piecewise
continuous Pareto fronts with different curvature (convex to concave). We consider
the local 1-greediness as defined in Section [3.3.1l Recall that a local 1-greedy
solvable problem is also 1-greedy solvable. We perform a comprehensive study on
the set of simple test functions T1-T5 (Sec. , whereas we restrict our analyses
to small populations, due to our results in Section [3.3.2]

Pre-experimental planning To gain a deeper understanding of the hypervolume
progress, we first analyze hypervolume contributions and local 1-greedy steps.

Hypervolume contributions: Intuitively, one may assume that the hypervolume
contributions of individuals tend to equal values for all points of an optimally
distributed set since, otherwise, a solution can move closer to the point with a
higher contribution. This assumption is wrong, as demonstrated for T4 with a €
{1/3,1/2,1,2,3} resulting in two concave fronts for o < 1, convex fronts for o > 1,
and a linear front for &« = 1. The analytically determined optimal positions of
the points w.r.t. the reference point r = (1,1)" are shown in Fig. m (left) and
the corresponding hypervolume contributions on the right side. The graphs are
symmetric to the bisecting line. Accordingly, the distributions are symmetric to the
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Fig. 3.10: Optimal positions of points on Pareto fronts of T4 with different curvature (left)
and corresponding hypervolume contributions (right), w.r. t. the reference point
r = (1,1)T. The distributions are symmetric and the contributions are not all

equal.
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Fig. 3.11: Left: Areas of acceptance/rejection of points due to their hypervolume contri-
bution, relative to the decision space variables of a population on the Pareto
front of T1. Improving areas are adjacent to the points.

Right: Progress of moving the points from their starting positions to their
optimal positions by a local search (5 + 1)-SMS-EMOA on T4 (a = 1/3).

middle point on the bisecting line, and so are the hypervolume contributions. The
contributions are displayed sorted according to the first objective. For o < 3, the
values tend to grow with increasing . On concave Pareto fronts, the middle point
has the highest contribution and values decrease monotonic towards the boundaries,
whereas it is the other way round for convex Pareto fronts, so that the knee point
has the lowest contribution. Only on the linear front, all contributions are equal,
and the points are equally spaced as proved in Lemma

Local 1-greedyness: Fig. (left) shows the areas of acceptance and rejection of
points, exemplarily for a randomly initialized population on T1 (analogous results
have been observed for T2-T5). Note that the acceptance regions are directly
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adjacent to the current points, so that a point can be improved by a local movement.
To further investigate the effect of single local refinements, a local search SMS-
EMOA is applied, with variation only by Gaussian mutation with the small step
size o = 0.01. Fig. |3.11] (right) displays the progress of the decision space variables
of this local search (5 + 1)-SMS-EMOA on T4 with @ = 1/3 w.r.t. the fixed
reference point ' = (2,2)7. As starting positions, the optimal distribution for
the closer reference point r = (1,1)" is used. The algorithm is able to guide the
solutions from the old to the new optimal positions. [...]| For the new reference
point r’ the optimal points move closer to the boundaries of the Pareto front as
there is more hypervolume to gain due to the farther reference point. The other
points follow these extremal solutions to cover the resulting distance.

The following experiment shall support the arising assumption that even a local
search-based (u+1) SMS-EMOA converges towards the optimal population.

Task Check the hypothesis that the local search SMS-EMOA is able to approxi-
mate the optimally distributed subset of the Pareto front of the given continuous
test problems T1-T5 for fixed population sizes p € {1,...,6} with an accuracy
limited by the step size o = 0.01.

Setup For each test function T1-T5 and population sizes p € {1,...,6}, ap-
proximations for the hypervolume-optimal distribution are globally calculated by
the MATLAB implementation of the (5,10)-CMA-ES by Hansen and Ostermeier|
(2001)), where no limit on the function evaluations, but a lower limit on o; (i =
1,...,p) of 1072 is specified. We trust in the quality of the results due to the
experiences in Sec. 3.3.2] For each configuration 10,000 runs of the local search
SMS-EMOA are performed using different random initializations and the results
after 1+ 1,000 generations are compared to the approximations found by the global
optimization of the CMA-ES. A run is denoted as failed when the hypervolume of
the found approximation is below 99% of the approximated optimal one.

Results/Observations The local search SMS-EMOA detects the optimal distri-
bution in all runs for the convex and concave test functions T1-T5 except for 10%
of the initializations on the concave-convex Pareto front T5 for © = 1. When the
initial solution is situated close to the left border (z < 0.1), the local search SMS-
EMOA converges to the left border, which indicates the optimum for the concave
part of the Pareto front, instead of detecting the globally optimal position in the
inflection point.

Discussion Based on thorough experimentation, it can be assumed that even
a local search SMS-EMOA robustly detects the globally optimal distribution in
cases where the sign of the second derivative with respect to the first objective
does not change. However, due to emerging effects of the local refinements and

112



3.3 Optimality of Steady-State-Selection

their interaction, for higher population sizes, this result seems to hold also for
concave-convex Pareto fronts.

3.3.4 Conclusions

We investigated the process of the SMS-EMOA when optimizing the distribution
of points on the Pareto front in order to maximize the hypervolume. Our posed
question was, whether the steady-state (or 1-greedy) selection of exchanging only
one individual per generation is able to reach a global optimum of the population’s
hypervolume which is defined w.r.t. a fixed reference point.

To deeper understand the optimization process, we analyzed a counter-example. It
is revealed that the local optimum where the EMOA gets stuck is not a singularity
but has an actual strong attractor so that also p-greedy or non-elitist algorithms
fail to detect the global optimum. This result is a step forward from theoretical
possibilities to more practical probabilities. The constructed counter examples
appear artificial as the Pareto fronts are disconnected and one may think that the
non-optimality is achieved by forbidding points at the right positions. However,
connecting the parts shall keep the negative properties while making the function
continuously differentiable, so we conjecture that counter examples also exist for
this class of problems where an arbitrary movement of points is possible.

We proved that the hypervolume is a concave function in case of a linear Pareto
front, thus the function does not have a non-global local optimum and the contin-
uous improvement of the hypervolume results in the global optimum. Thorough
experiments showed that the optimal hypervolume is reliably detected by the 1-
greedy SMS-EMOA on the chosen examples of continuously differentiable functions
with connected Pareto fronts. These results strongly suggests that these functions
are 1-greedy solvable, i.e., there is no configuration from where the optimum cannot
be reached. Failures have only been detected for a (1+1)-SMS-EMOA, so we think
the risk of not being 1-greedy solvable decreases with increasing population size of
the EMOA.

Recall that we considered a model scenario with a fixed reference point, so the
results do not directly apply to the SMS-EMOA with the normally used adaptive
reference point. For a large population size, the scenarios shall behave similar as
the reference point is expected to change only slightly after the points are spread
along the whole Pareto front. For these cases, we experimentally did not observe
any failure on the considered functions. For small population sizes, we witnessed
some failures of getting stuck in a local optimum. These problems shall not occur
with an adaptive reference point, where the optimization problem is dynamic due
to the changing reference point, so that the population is unlikely to get stuck.
This again advocates the concept of the adaptive reference point.

This topic is still under examination as the recent work by |Bringmann and Friedrich
(2011)) shows. Our conjectures are still neither proved nor disproved.
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Open problems are to identify other function classes where the 1-greedy concept
suffices or if not—to give the lowest k£ so that a k-greedy selection succeeds. Even
more desirable than analyzing the general possibility of solvability (if a path to the
optimum exists from each configuration) is the consideration of the probabilistic
solvability, i.e., analyzing how likely it is to reach the global optimum. Our exper-
imental studies are a first step, whereas more insights are worthwhile to generalize
our results.
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3.4 Performance on Many-Objective Problems

First studies of the SMS-EMOA demonstrated its performance on two- and three-
objective problems, see [Emmerich et al.| (2005)*, |Naujoks et al.| (2005a,b)*, [Beume
et al| (2007)* and Section [3.1} and the preceding sections analyzed certain sub-
processes of the algorithm. Here, the quality of the SMS-EMOA’s finally generated
approximations of the Pareto front shall be analyzed, when optimizing problems of
more than three objectives—termed many-objective by Farina and Amato| (2002).
Due to the lack of theoretical tools for performance analysis of EMOA on complex
problems, we study the performance through experimental analyses as a compara-
tive benchmark including other state-of-the-art algorithms. It is revealed that also
in this scenario, the SMS-EMOA shows outstanding performance. The results are
taken from |Wagner et al.| (2007a)* and so are the literal citations with the notation
adapted to this document, except for a paragraph in Sec. taken from [Wagner
et al.| (2006)*.

At the time of this study, it was common practice to test algorithms only for the
two- and three-dimensional cases. Thus it was unknown how the optimizers perform
on higher dimensional problems, so that the field of many-objective optimization
achieved some surprising results. Our study, among others, contributed to the
understanding that performing well in the popular 2- and 3-objective cases does
not imply the same for more objectives.

The many-objective scenario constitutes a special challenge due to the high-dimen-
sional objective space. As described in Section the fraction of the space that
is comparable to a certain point decreases exponentially as 279! with increasing
dimension d (cf. Farina and Amato| (2002)). So, the typical case is that points
are incomparable and the Pareto dominance gives no information how to sort and
select them. Therefore, a sound additional selection criterion, like the hypervolume
contribution, is required to resolve these cases. As we see the main challenge in the
selection, we setup the benchmark such that all operators apart from the selection
are equal (or similar as far as possible) so that the selection operators shall decide
on success or failure of the algorithms.

For the benchmark we consider algorithms with three classes of selection concepts:
based on the Pareto dominance (NSGA-II, SPEA2, e-MOEA), aggregation tech-
niques (MSOPS, RSO by [Hughes (2003, 2005)), or on quality indicators (IBEA,
SMS-EMOA). The main interest of the study are the magnitudes of the results,
i.e., whether the algorithms are able to approach the Pareto front or not. It is
revealed that the well-established EMOA NSGA-IT and SPEA2 rapidly degradate
with increasing number of objectives, and we analyze why. Modern EMOA like
e-MOEA, MSOPS, IBEA and SMS-EMOA cope well with the high-dimensional
objectives space, and the SMS-EMOA seems to perform best.

The following Section gives an overview on related work and specifies our
benchmark setup. Section presents the results of Pareto-based EMOA and
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an additional study to pursuing the cause of their failure. Section describes
the aggregation methods including a new methods of generating weight vectors for
MSOPS, next to their performance results. The indicator-based EMOA are studied
in Section [3.4.4] Finally, Section [3.4.5| gives concluding remarks and discusses open
problems of many-objective optimization.

3.4.1 Preliminaries

Related Work

Farina and Amato| (2002) introduced the term many-objective optimization and
have been among the pioneers to sensitize the research community to this chal-
lenge. Few previous studies on many-objective optimization by |Purshouse and|
[Fleming| (2003)) and Hughes| (2005) focus to demonstrate the bad performance of
NSGA-II by Deb et al| (2002al). Hughes observed a simple single-objective restart
strategy outperforming NSGA-II on a six-objective function in a two-dimensional
decision space. Upon this, he implied a generalization to all Pareto-based tech-
niques. Contrarily, we demonstrate that the modern e-dominance-based e-MOEA
performs well.

Ishibuchi et al| (2008) give a brief overview of challenges and useful techniques
in many-objective optimization, where scalarization approaches like MSOPS are
considered as promising. The study of our modification of NSGA-II presented
in Section is continued and confirmed. |Adra and Flemingl (2011)) propose
a new diversity mechanism and demonstrate that NSGA-II using the measure is
significantly improved on many-objective problems.

Recently, Bringmann et al.| (2011)) presented an EMOA guided by a formal notion
of approximation, namely the additive approximation of the Pareto front. Its
performance is demonstrated on DTLZ functions of up to 20 objectives.

Our benchmark is setup such that it extends existing studies on low-dimensional
problems, i.e., it uses the same parameterization as in Deb et al.| (2003)), and uses
well-established test problems.

Benchmark Settings

All algorithms, except RSO, have been implemented within the PISA framework
(cf. Bleuler et al. (2003))) since an integrative framework simplifies comparisons.
The same variation operators are used with exactly the same parameterization,
which is chosen according to the studies of |Deb et al.| (2003]). Simulated binary
crossover (SBX) and polynomial mutation (PM) as described by (cf.
Sec. are applied with mutation probability p,, = 1/n per decision variable
and recombination probability p. = 1 per individual. The distribution indices
Ne = 15 and 7, = 20 are used. If not otherwise stated, a (u + u) strategy and a
binary tournament for mating selection are applied. A number of 30,000 function
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evaluations is accomplished and the population size p = 100 is chosen. For each
EMOA, besides SMS-EMOA, on each test function, 20 runs are performed. Due
to the exponential runtime and the small standard deviation in the observed runs,
SMS-EMOA is only repeated 5 times.

Test Functions

To benchmark the performance of the considered EMOA, the functions DTLZ1 and
DTLZ2 of the DTLZ test function family by Deb et al.| (2002b)) are invoked (cf.
Sec. . These functions are scalable in the number of objectives and thus allow
for a many-objective study. The decision vector is divided into two subvectors.
The first one of length d — 1 contains the parameters defining the position on the
given surface while the second of length v specifies the distance to the Pareto front.
This results in dimension d + v — 1 of the decision space. According to Deb et al.
(2002b), ¥ = 5 is used in DTLZ1 and v = 10 is used in DTLZ2 respectively.

The Pareto front of DTLZ1 is a linear hyperplane. DTLZ2 features a Pareto front
that corresponds to the positive part of the unit hypersphere. [...| Here, the
interaction between objectives is nonlinear. The domain of all decision variables is
[0, 1]. Due to different scaling constants in the distance function, the co-domain of
objective values for DTLZ1 is [0,1 + 225v] and [0, 1 + 0.25v] for DTLZ2, respec-
tively. The Pareto set of both test functions corresponds to x4=...=x, = 0.5 with
arbitrary values for z1,...,x4_1.

Performance Assessment

The quality of the final Pareto front approximations is evaluated via the hyper-
volume and a convergence measure by Deb et al| (2003). The reference points
r = (0.7,...,0.7) for DTLZ1 and r = (1.1,...,1.1) for DTLZ2 were used in pre-
vious studies e.g. Deb et al. (2003)), Naujoks et al.| (2005a)* and are close to the
Pareto front in order to emphasize on the distribution of optimal solutions. Points
that do not dominate the reference point are discarded for the hypervolume cal-
culation. The indicator values are normalized by calculating the fraction of the
analytical optimal value. Note that exactly 100% are unreachable with a finite
number of points.

The convergence measure describes the average distance of the approximation to
the Pareto front in the objective space. In contrast to the study by|Deb et al.| (2003),
the Euclidean distance to the nearest optimal solution is determined analytically
without using a reference set. This is possible due to the special structure of the
employed Pareto fronts.

The distance is calculated as follows (description taken literally from Wagner et al.
(2006)*). In analytic geometry, the distance of a point to a hyperplane can be
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calculated using the Hesse normal form. [...| The DTLZ1 hyperplane possesses

the normal vector (21,...,24)" = (1,...,1)" resulting in the distance

dDTLZ1<X) = |f1<X) + ...+ fd(X> — 05| (320)

of a solution x to the Pareto front.

On DTLZ2, the shortest way to the Pareto front is the line between the position
vector of the solution and the origin of the objective coordinate system. Since
the distance of the origin to each point of the Pareto front is 1, the distance of a
solution x to the Pareto front constitutes

dprrz2(x) = |f(x)| = 1. (3.21)

3.4.2 Pareto-based EMOA

As Pareto-based EMOA, we classify EMOA with selection criteria that are mainly
based on the qualitative information of Pareto-dominance, Pareto-based ranking,
or counting.

We assign NSGA-II to this category due to its non-dominated sorting and consider
it because it has clearly been the most frequently applied EMOA at the time of the
study and still is the most popular one. SPEA2 belongs to this class because of
the fitness assignment based on counting of dominated and dominating individuals.
The e-MOEA is a representative of the more modern e-dominance concept. The
algorithms are described in Section [3.1] so that here only their parameterization is
detailed. All EMOA are executed in the PISA framework.

For the NSGA-II all parameters have already been mentioned in Section [3.4.1} For
the k-nearest neighbor method of SPEA2, in PISA k£ =1 is chosen. The ee MOEA
has been proposed as steady-state algorithm, whereas we seek to parameterize it
similar to the other algorithms using the (u + u) selection. As a compromise, we
choose a (2 + 2)-selection to have a small offspring population size and p = .
For the e-MOEA, the resulting set is not the population but the archive, so € is
chosen such that its archive E finally contains about 100 solutions in order to assure
comparability with the sets of the other EMOA. The € values are determined in a
pre-experimental study, where the eeMOEA showed an extremely high sensitivity to
this parameter, which not only shall distinguish the Pareto front appropriately but
also the space on the way to it. All vector components of € are chosen to be equal.
For DTLZ1, it is € = (€;, €, ¢;) with ¢; = 0.03 in case of 3 dimensions, ¢; = 0.047
in 4 dimensions, ¢; = 0.057 in 5 dimensions, and ¢; = 0.066 in 6 dimensions. For
DTLZ2, it is ¢; = 0.058 in case of 3 dimensions, ¢; = 0.125 in 4 dimensions, ¢; = 0.18
in 5 dimensions, and ¢; = 0.232 in 6 dimensions.

118



3.4 Performance on Many-Objective Problems

Experimental Results

The quality indicator values of the final sets are regarding the convergence given
in Table [3.2] and regarding the relative hypervolume in Table [3.3]

Tab. 3.2: Convergence measure of the Pareto dominance based EMOA.

DTLZ1 DTLZ2
obj. | algorithm || mean ‘ std.dev ‘ median || mean ‘ std.dev ‘ median

3 e-MOEA || 0.00614 | 0.00413 | 0.00484 || 0.00102 | 0.00022 | 0.00105
NSGA-II || 0.06333 | 0.15581 | 0.01002 || 0.01049 | 0.00162 | 0.01027
SPEA2 0.06783 | 0.16435 | 0.00792 || 0.00801 | 0.00112 | 0.00806
4 e-MOEA || 0.15990 | 0.34073 | 0.01990 || 0.00129 | 0.00024 | 0.00126
NSGA-IT || 1.70260 | 1.95260 | 0.69515 || 0.08522 | 0.02580 | 0.08060
SPEA2 3.47990 | 4.78910 | 1.66910 || 0.08164 | 0.01676 | 0.08901
o e-MOEA || 0.22348 | 0.41685 | 0.01941 || 0.02681 | 0.00120 | 0.02670
NSGA-IT || 300.416 | 37.2461 | 317.506 || 1.06780 | 0.14504 | 1.07770
SPEA2 358.818 | 25.0853 | 366.236 || 1.30970 | 0.15758 | 1.27760
6 e-MOEA || 0.97014 | 1.39920 | 0.27217 || 0.00272 | 0.00067 | 0.00266
NSGA-IT || 393.674 | 17.6076 | 388.689 || 2.15610 | 0.09584 | 2.16910
SPEA2 482.742 | 13.6757 | 479.577 || 2.32000 | 0.09617 | 2.36070

Tab. 3.3: Relative hypervolume of the Pareto dominance based EMOA.

DTLZ1, r = (0.7,...,0.7) DTLZ2, r = (1.1,...,1.1)
obj. | algorithm | mean ‘ std.dev ‘ median || mean ‘ std.dev ‘ median
3 e-MOEA || 0.94560 | 0.01005 | 0.94662 || 0.92858 | 0.00118 | 0.92836
NSGA-II || 0.94333 | 0.11423 | 0.96923 || 0.86913 | 0.00803 | 0.86918
SPEA2 0.98010 | 0.00152 | 0.98068 || 0.90760 | 0.00350 | 0.90782
4 e-MOEA || 0.85493 | 0.18655 | 0.92697 || 0.87722 | 0.00186 | 0.87766
NSGA-IT || 0.45730 | 0.40600 | 0.46204 || 0.71644 | 0.01971 | 0.71733
SPEA2 0.62316 | 0.34319 | 0.72224 || 0.78461 | 0.01258 | 0.78202
5 e-MOEA || 0.82261 | 0.16668 | 0.86933 || 0.83847 | 0.00308 | 0.83809

NSGA-IT || 0 0 0 0.11570 | 0.06842 | 0.11734
SPEA2 0 0 0 0.12528 | 0.06942 | 0.12864
6 e-MOEA || 0.64563 | 0.38344 | 0.81552 || 0.85332 | 0.01434 | 0.85497
NSGA-IT || 0 0 0 0 0 0
SPEA2 0 0 0 0 0 0

NSGA-IT and SPEA2 rapidly decrease in quality with increasing dimension of the
objective space. If more than four objectives are considered, these algorithms do
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not converge to the Pareto front as indicated by the high distance values. With
dimension greater than four, no relative hypervolume is measured because no point
dominating the reference point is achieved. The results of the e-MOEA are in mag-
nitudes better than the others, and the algorithm especially achieves a positive
relative hypervolume in each dimension. So, the e-dominance concept seems to
work also in high dimensions, provided that the size of the e-boxes is chosen ap-
propriately. However, the high-dimensional results are only for DTLZ2 close to the
best considered algorithms.

All algorithms perform reasonably in case of 3 dimensions, whereas it seems that
especially the concepts of NSGA-IT and SPEA2 are not qualified for higher dimen-
sional problems. Since the remaining operators are chosen equally, we attribute
this failure to the selection operators. The following additional study shall reveal
a deeper insight of the malfunction.

Additional Convergence Study

We increase the budget of function evaluations to 1,000,000 in order to exhibit
whether a convergence occurs maybe later. The progress is shown for the 6-
objective DTLZ1 in Fig. [3.12] where the graph of e-MOEA is hardly visible due
to its convergence. Contrarily, NSGA-II and SPEA2 increase the distance to the
Pareto front during the first generations. We assume that this behavior stems from
the selection based on diversity measures which favor higher distances between
solutions. As the boundary points (regarding the measure) are always kept, the
population spreads without a tendency to the Pareto front.
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Fig. 3.12: Convergence measure during the optimization run performing the median result
on six-objective DTLZ1.

120



3.4 Performance on Many-Objective Problems

To confirm this assumptions and improve NSGA-II, a slight modification of the
crowding distance is studied. Originally, an individual without a neighbor regarding
one dimension of the objective space is assigned an infinite crowding distance.
Instead of that, a value of zero is used, causing that non-dominated solutions with
extremal values are rejected. Although this variant is not able to converge to
the Pareto front, an improvement of the average distance within the first 100, 000
function evaluations is obvious (Fig. [3.12)). Then, most of the decision variables
have reached their optimal value. Only one or two of them remain in a local
optimum. This experiment shows that a diversity measure with emphasis on a
spread of the population can misguide the EMOA to deterioration and the loss
of promising non-dominated solutions. [Ishibuchi et al. (2008) confirm that our
modification improves the convergence while it decreases the diversity. We consider
both as an advantage since diversity over the objective space far away from the
Pareto front is not to be aspired, but the aim is diversity along the Pareto front.

3.4.3 Aggregation-based EMOA

Basic aggregation methods are single-objective optimizers, which multiply the ob-
jective values with weights and accumulate them to a scalar value. The EMOA
considered here, enhance aggregation concepts in order to produce a set of solu-
tions. In contrast to the other EMOA considered, aggregation-based approaches
require the a priori definition of relations between objective functions. This results
in a certain focus during the optimization. We consider several variants of MSOPS
and a simple restart strategy called RSO, both developed by [Hughes (2003, 2005)).

MSOPS

Multiple Single Objective Pareto Sampling (MSOPS) does not feature Pareto meth-
ods, but handles all objectives in parallel. The decision maker has to choose ¢

vectors of weights for every objective function to enable an aggregation. Hug

recommends weighted min-max (termed MSOPS 1 in the following) and
a combination of this approach with Vector-Angle-Distance-Scaling (VADS) called
dual optimization (MSOPS 2). Depending on the aggregation strategy, one receives
a set of ¢ or 2¢ aggregated scores per solution. The scores are held in a score matrix
S, where each row belongs to a solution and each column represents an aggregated
score. Each column of the matrix S is ranked, giving the best performing popula-
tion member rank one. The rank values are stored in a matrix R. Each row of R is
sorted ascending, resulting in a lexicographical order of the individuals. The run-
time is in O(pgqd) for the computation of the aggregated scores, and in O(uqlog q)
and O(qulog ) respectively to perform the sort. Thus, the runtime of MSOPS is
O(pq(d + log g + log i) per generation.

Obviously, the choice of weight vectors determines the distribution properties of
MSOPS. Each weight vector w = (wq,...,wy) corresponds to a direction, given
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3 Characteristics of Hypervolume-based EMOA

analytically by a target vector starting in the origin. The aim of the aggregation
methods is to reach the point on the corresponding direction vector which is as
close as possible to the origin. To this end, weighted min-max focuses on the
distance to the origin, while VADS favors solutions whose position vector has a
small intersecting angle with the target vector.

In this study, the optimization shall not have a special focus, but an approximation
of the whole Pareto front is desired and the weight vectors have to be chosen
appropriately. In the benchmarking in Hughes| (2005)), ‘50 target vectors spread
uniformly across the search space’ are used. The target vectors |...| are created
by calculating an initial number of steps s = [ /q] and constructing each possible
vector containing multiples of 1/s between 0 and 1. Afterward, these target vectors
are normalized and doubles are removed. If the number of targets is lower than
desired, s is incremented and the procedure is repeated. At the end, a next neighbor
technique is used to prune the set of target vectors to the desired size. Because the
PISA implementation of MSOPS uses weight vectors, a transformation of the target
vectors into weights is necessary. We recommend-—deviant from (2005)—
the following procedure for transformation, which can also be used to transform
a set of utopia or reference points into weights and avoids numerically unstable
calculations in many cases.

From the aggregation methods can be referred that a weight vector for a specified
target fulfills the following d — 1 conditions, with the target vector t = (¢1,...,1):

wy -t = wq - ta, Wy -ty = w3 - 13, Wq—1-tg—1 =wq - tq

The normalizing condition wy+...4+wy; = 1 is added in order to obtain a completely
defined system of equations. Thus, the components of the corresponding weight
vector can be computed as follows:

Lt
T d
Zk:l Hj;ék tj

To extremal solutions with value 0 in d—1 objectives, a small € needs to be added to

allow the above calculation. generally recommends to use a number
of target vectors that is lower than the population size. Besides, he states that the
number of target vectors has to be increased for more objectives. To cover both
needs, three different sets of target vectors are used. The first contains 50 vectors,
the second 100 vectors, and the third 200 vectors.

MSOPS-II has been developed by after this study. It is a powerful
and user-friendly algorithm due to its automatic target vector generation, yet it
does not perform clearly better than MSOPS.

w; Ci=1,....d (3.22)

RSO

A restart strategy of a conventional single-objective evolutionary optimizer is ap-
plied as well and abbreviated RSO (Repeated Single Objective) according to
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Tab. 3.4: Convergence measure of aggregation algorithms. The leftmost column gives the
number of objectives.

DTLZ1 DTLZ2
algorithm mean ‘ std.dev ‘ median || mean ‘ std.dev ‘ median

3 | MSOPS 150 || 0.00276 | 0.00235 | 0.00185 || 0.00013 | 0.00014 | 9.0-107°
MSOPS 1 100 || 0.00278 | 0.00241 | 0.00244 || 0.00015 | 0.00010 | 0.00015
MSOPS 1 200 || 0.00234 | 0.00156 | 0.00210 || 0.00080 | 0.00020 | 0.00076
MSOPS 2 50 || 0.00214 | 0.00221 | 0.00161 || 9.0-107° | 5.9:107° | 8.4-1075
MSOPS 2 100 || 0.00222 | 0.00172 | 0.00191 || 0.00037 | 0.00013 | 0.00035
MSOPS 2 200 || 0.00128 | 0.00074 | 0.00116 || 0.00168 | 0.00034 | 0.00168
RSO 62.9990 | 15.2960 | 59.7140 || 0.26753 | 0.04901 | 0.26776
4 | MSOPS 150 || 0.00392 | 0.00451 | 0.00269 || 0.00023 | 0.00023 | 0.00012
MSOPS 1 100 || 0.00292 | 0.00252 | 0.00231 || 0.00024 | 0.00039 | 0.00013
MSOPS 1 200 || 0.00365 | 0.00319 | 0.00264 || 0.00072 | 0.00028 | 0.00067
MSOPS 2 50 || 0.00246 | 0.00216 | 0.00182 || 0.00016 | 0.00010 | 0.00012
MSOPS 2 100 || 0.00849 | 0.02369 | 0.00282 || 0.00074 | 0.00024 | 0.00072
MSOPS 2 200 || 0.00439 | 0.00378 | 0.00260 || 0,00203 | 0.00047 | 0.00195
RSO 118.260 | 33.4420 | 121.190 || 0.56473 | 0.07953 | 0.57386
5 | MSOPS 150 || 0.08016 | 0.31475 | 0.00814 || 0.00059 | 0.00027 | 0.00060
MSOPS 1 100 || 0.05667 | 0.23459 | 0.00337 || 0.00017 | 0.00023 | 7.1-107°
MSOPS 1 200 || 0.00779 | 0.00556 | 0.00651 || 0.00096 | 0.00033 | 0.00092
MSOPS 2 50 || 0.13676 | 0.26271 | 0.01882 || 0.00113 | 0.00038 | 0.00097
MSOPS 2 100 || 0.03308 | 0.11179 | 0.00614 || 0.00138 | 0.00065 | 0.00119
MSOPS 2 200 || 0.00870 | 0.01079 | 0.00535 || 0,00231 | 0.00059 | 0.00233
RSO 111.960 | 35.1240 | 112.140 || 0.73556 | 0.15491 | 0.72211
6 | MSOPS 150 || 0.02207 | 0.06509 | 0.00604 || 0.00044 | 0.00030 | 0.00044
MSOPS 1 100 || 0.00936 | 0.01579 | 0.00406 || 0.00012 | 8.7-107° | 9.7-107°
MSOPS 1 200 || 0.00734 | 0.00420 | 0.00712 || 0.00048 | 0.00028 | 0.00039
MSOPS 2 50 || 0.27890 | 0.63926 | 0.02603 || 0.00091 | 0.00058 | 0.00069
MSOPS 2 100 || 0.18106 | 0.32499 | 0.02496 || 0.00190 | 0.00097 | 0.00180
MSOPS 2 200 || 0.01344 | 0.01134 | 0.01026 || 0.00118 | 0.00056 | 0.00116
RSO 110.910 | 42.7920 | 113.600 || 0.67628 | 0.13970 | 0.69903

(2005). Here, a single-objective run is performed for each of the 100 weight vectors.
Thus, the number of function evaluations has to be divided among them, resulting
in only 300 evaluations per run.

The derandomized mutation operator by Ostermeier et al. (1994) is applied in
a (1,10)-evolution strategy. This operator was a first step towards the popular
Covariance Matrix Adaptation (CMA) operator by Hansen and Ostermeier| (2001),
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3 Characteristics of Hypervolume-based EMOA

which is known to produce good results within limited function evaluations. To
handle multiple objectives in a single-objective EA, the weighted min-max approach
was chosen like in MSOPS. RSO is not part of the PISA framework.

Experimental Results

Tab. 3.5: Relative hypervolume of aggregation algorithms. The leftmost column gives the
number of objectives.

DTLZ1, r = (0.7,...,0.7) DTLZ2,r = (1.1,...,1.1)

algorithm mean ‘ std.dev ‘ median || mean ‘ std.dev ‘ median
3 | MSOPS 150 || 0.97142 | 0.00127 | 0.97184 || 0.89663 | 0.00717 | 0.89817
MSOPS 1 100 || 0.96484 | 0.00171 | 0.96537 || 0.88344 | 0.00208 | 0.88341
MSOPS 1 200 || 0.96180 | 0.00955 | 0.96625 || 0.88752 | 0.02681 | 0.88490
MSOPS 2 50 || 0.97278 | 0.00111 | 0.97317 || 0.89822 | 0.00054 | 0.89799
MSOPS 2 100 || 0.96719 | 0.00623 | 0.96776 || 0.91774 | 0.01203 | 0.92105
MSOPS 2 200 || 0.95744 | 0.00965 | 0.96020 || 0.91117 | 0.00775 | 0.91253
RSO 0 0 0 0.67735 | 0.03730 | 0.68188
4 | MSOPS 1 50 || 0.96590 | 0.00107 | 0.96623 || 0.84765 | 0.01438 | 0.85238
MSOPS 1 100 || 0.94724 | 0.00573 | 0.94887 || 0.72575 | 0.03761 | 0.73177
MSOPS 1 200 || 0.94764 | 0.01187 | 0.94968 | 0.81489 | 0.03289 | 0.82292
MSOPS 2 50 || 0.96726 | 0.00062 | 0.96730 || 0.85284 | 0.00049 | 0.85273
MSOPS 2 100 || 0.96908 | 0.00258 | 0.96955 || 0.86206 | 0.00609 | 0.86445
MSOPS 2 200 || 0.95605 | 0.00561 | 0.95742 || 0.85938 | 0.01289 | 0.86395
RSO 0 0 0 0.39649 | 0.02363 | 0.39435
5 | MSOPS 150 || 0.97740 | 0.00614 | 0.97956 || 0.78971 | 0.05479 | 0.80668
MSOPS 1 100 || 0.96312 | 0.01848 | 0.97160 || 0.48432 | 0.32422 | 0.72034
MSOPS 1 200 || 0.97749 | 0.00584 | 0.97694 || 0.82177 | 0.01404 | 0.82490
MSOPS 2 50 || 0.93235 | 0.16743 | 0.98387 || 0.81037 | 0.00915 | 0.80863
MSOPS 2 100 || 0.98743 | 0.00119 | 0.98762 || 0.86497 | 0.00606 | 0.86565
MSOPS 2 200 || 0.97966 | 0.00296 | 0.97987 || 0.84002 | 0.01467 | 0.84609
RSO 0 0 0 0.04960 | 0.03184 | 0.05873
6 | MSOPS 150 || 0.98688 | 0.00469 | 0.98770 || 0.70669 | 0.18905 | 0.76654
MSOPS 1 100 || 0.95343 | 0.02840 | 0.96312 || 0.63285 | 0.13323 | 0.68515
MSOPS 1 200 || 0.99046 | 0.00169 | 0.99056 || 0.81435 | 0.03071 | 0.81964
MSOPS 2 50 || 0.92549 | 0.18116 | 0.99355 || 0.84659 | 0.00215 | 0.84627
MSOPS 2 100 || 0.96533 | 0.06398 | 0.98592 || 0.79881 | 0.01918 | 0.79436
MSOPS 2 200 || 0.99122 | 0.00160 | 0.99154 || 0.81208 | 0.11049 | 0.83925
RSO 0 0 0 0.16333 | 0.03440 | 0.15121
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3.4 Performance on Many-Objective Problems

The convergence and relative hypervolume results are displayed in Tab. and [3.5
While MSOPS obtains very promising results, RSO does not succeed in reaching
the Pareto front. This is due to a too small number of function evaluations per
run and the loss of information with every restart. Confirming the observations
of , RSO outperforms NSGA-II and SPEA2 in case of five and six

objectives.

Almost all variants of MSOPS attain very low average distances indicating that
nearly optimal solutions have been found. Only for five or six objectives, variants
using a lower number of target vectors fail to converge to the Pareto front in some of
the runs. In Tab. [3.4] this behavior can be inferred from a high standard deviation
and high differences between the mean and the median value.

From the obtained hypervolume can be concluded that the distribution properties
can be slightly improved by the supporting use of VADS. Hughes’ assumption that
the number of target vectors should be increased if more objectives are concerned
is confirmed. For three objectives, the variants of MSOPS using 50 target vectors
obtain the maximal hypervolume among the aggregation methods. With increasing
objectives, the best values can be obtained with a higher number of target vectors.
In general, the results show that the method used to design the target vectors
is able to generate well distributed Pareto front approximations. Even for three
objectives, NSGA-II and e-MOEA (DTLZ1), respectively NSGA-IT and SPEA2
(DTLZ2) can be outperformed regarding the hypervolume. Note that the given
method to generate the target vectors only performs well on continuous Pareto

fronts. As observed by (2003)), a refinement of the targets is necessary for
more complicated problems.

3.4.4 Indicator-based EMOA

The term indicator-based EA (IBEA) was introduced by Zitzler and Kinzli| (2004))
for EMOA guided by a general preference information. The EMOA’s selection
operator uses a preference function (indicator) as a single-objective substitute for
the d-dimensional objective function. In contrast to the aggregation methods, this
preference information describes a general aim as expressed by quality measures
like the hypervolume.

We consider SMS-EMOA and two versions of IBEA, implemented in PISA. The
SMS-EMOA is applied in its original version (see Sec. , i.e., it performs non-
dominated sorting and selection due to the hypervolume contribution. The adap-
tive reference point is here chosen according to the elements of the worst ranked
fronts only, instead of the whole population, in order to give even less emphasis to
boundary solutions. The IBEA (cf. Sec. is considered in the variants IBEAzp
using the pairwise hypervolume and IBEA., with the additive e-indicator. The
scaling factor k = 0.05 is chosen as recommended in Zitzler and Kiinzli (2004).
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3 Characteristics of Hypervolume-based EMOA

We apply the recommended adaptive variant of the IBEA (cf. [Zitzler and Kiinzli
(2004)), which uses a normalization of the objective values to the interval [0, 1].

Experimental Results
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Fig. 3.13: Boxplots on the convergence (top) and the relative hypervolume (bottom) of
indicator-based EMOA on DTLZ1 (left) and DTLZ2 (right) with 6 objectives.

An overview of the results is exemplarily given for the 6-dimensional case by the
box plots in Fig. [3.13] the complete values of the convergence and the relative
hypervolume are given in Tab.[3.6|and [3.7] As can be inferred from the convergence
measure, both IBEA variants reach the Pareto front of DTLZ2. On DTLZ1, only
IBEA., converges towards the Pareto front for all dimensions. IBEA ;p reaches a
very good distance value on DTLZ1 with three dimensions but fails in case of more
objectives. This is due to the normalization of objective values to [0, 1], tending the
hypervolume indicator to favor extremal solutions, which hinder the progression.

Surprisingly, the IBEA | using the additive e-indicator reaches better hypervolume
values than the IBEAyp invoking the hypervolume indicator. The consideration
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Tab. 3.6: Convergence measure of indicator-based EMOA. The leftmost column gives the
number of objectives.

DTLZ1 DTLZ2
algorithm mean ‘ std.dev. ‘ median || mean ‘ std.dev. ‘ median
3 | IBEA . 0.04399 | 0.17481 | 0.00057 || 0.00015 | 5.0-107° | 0.00014
IBEAyp 0.00137 | 0.00337 | 0.00029 || 1.3-107° | 5.3-107% | 1.2.107°
SMS-EMOA || 0.00110 | 0.00148 | 0.00039 || 3.4-107¢ | 1.2.107% | 2.8-107°
4 | IBEA 0.01790 | 0.02940 | 0.00096 | 0.00071 | 0.00012 | 0.00069
IBEAgp 76.1230 | 119.550 | 0.00136 || 4.5-107° | 1.3-107° | 4.2.107°
SMS-EMOA || 0.00193 | 0.00176 | 0.00100 || 1.4-107® | 5.0-107% | 1.2:107°
5 | IBEA . 0.02056 | 0.06678 | 0.00129 || 0.00115 | 0.00019 | 0.00112
IBEAgp 151.310 | 131.820 | 215.000 || 0.00013 | 0.00014 | 0.00010
SMS-EMOA || 0.00333 | 0.00215 | 0.00351 || 3.7-107® | 9.2.107% | 3.8-10°
6 | IBEA . 0.00467 | 0.00450 | 0.00256 || 0.00187 | 0.00031 | 0.00184
IBEAgp 82.1580 | 116.410 | 0.00182 || 0.00015 | 5.6-1075 | 0.00014
SMS-EMOA || 0.10278 | 0.22310 | 0.00444 || 5.4-107® | 1.1-1075 | 5.2-107°

Tab. 3.7: Relative hypervolume of indicator-based EMOA. The leftmost column gives the
number of objectives.

DTLZ1, r = (0.7,...,0.7) DTLZ2,r = (1.1,...,1.1)
algorithm mean ‘ std.dev. ‘ median || mean ‘ std.dev ‘ median
3 | IBEA.; 0.77693 | 0.03182 | 0.78033 || 0.92991 | 0.00075 | 0.93002
IBEAyp 0.73929 | 0.03144 | 0.74208 || 0.92023 | 0.00071 | 0.92008
SMS-EMOA || 0.98352 | 0.00071 | 0.98387 || 0.93870 | 6.3-10~° | 0.93873
4 | IBEA 0.82920 | 0.02445 | 0.83425 || 0.89477 | 0.00059 | 0.89484
IBEAyp 0.51417 | 0.35620 | 0.70647 || 0.88633 | 0.00090 | 0.88619
SMS-EMOA || 0.97612 | 0.00034 | 0.97627 || 0.90370 | 6.4-10~° | 0.90368
5 | IBEA ., 0.87018 | 0.02777 | 0.86961 || 0.88571 | 0.00097 | 0.88584
IBEAyp 0.26292 | 0.33673 | O 0.88250 | 0.00122 | 0.88259
SMS-EMOA || 0.99182 | 0.00019 | 0.99182 || 0.89619 | 9.5-107° | 0.89624
6 | IBEA ., 0.89146 | 0.03569 | 0.90029 [| 0.89283 | 0.00130 | 0.89322
IBEAgp 0.40153 | 0.30853 | 0.53634 || 0.88431 | 0.02231 | 0.89124
SMS-EMOA | 0.96688 | 0.06741 | 0.99698 || 0.90483 | 0.00014 | 0.90481

of translation lengths in the additive e-indicator causes a good distribution of so-
lutions. Contrarily, the approximation of the hypervolume contribution through
the binary hypervolume indicator tends to spiral downward with increasing dimen-
sion of objective space. Both adaptive IBEA fail to produce a good distribution on
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DTLZ1, which we ascribe to the high-scaled co-domain and the resulting difficulties
in the scaling of the fitness values.

0.8

0.4

0.0

Fig. 3.14: Results of one run of SMS-EMOA on 6-objective DTLZ2. In the parallel plot,
each column corresponds to one objective.

SMS-EMOA reaches the best hypervolume values of all considered algorithms. The
distance values are very good as well and all runs except one reached the Pareto
front. This run on six-objective DTLZ1 stagnated since one decision variable—
which defines the distance—remains static at a non-optimal value due to an unusual
loss of diversity in decision space in the beginning of the optimization process.
Since the selector modules in PISA only decide regarding the objective values, this
effect cannot be blamed to the selection properties of SMS-EMOA. Figure [3.14
exemplarily pictures the distribution of a typical six-objective result set of SMS-
EMOA in a parallel plot. Every objective is covered and the structure of the set is
almost symmetric, indicating a uniformly spread distribution of solutions over the
whole Pareto front.

3.4.5 Conclusions

Our study demonstrated that concepts performing well in case of two or even
three objective may not be qualified for higher dimensional problems. The bad
performance of early Pareto-based methods like NSGA-II and SPEA2 observed by
Hughes (2005) and |Purshouse and Fleming| (2003) is confirmed. They show a rapid
degradation with increasing number of objectives. Some additional studies show
that they do not converge to the Pareto front at all and stagnate far away from it.
The performance of e-MOEA refutes the hypothesis of Hughes that a Pareto-based
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approach cannot succeed on many-objective problem instances. Instead, favoring
extremal solutions has been shown to hinder the progression in many-objective
spaces, which is also obviously for IBEA.

It is shown that more recent EMOA using indicators, which feature more than
just distribution aspects, perform very well in many-objective optimization. Espe-
cially, SMS-EMOA [...| outperforms the other algorithms on all considered test
functions. Moreover, an aggregation-based EMOA | namely MSOPS, performs well
with respect to convergence aspects. A sophisticated scheme for the generation of
weight vectors is introduced and also produces well distributed solution sets. In
comparison to the simple restart strategy RSO, MSOPS benefits from structural
equalities of good solutions by optimizing all weight vectors in parallel. |...]|

Our results give valuable insights for practitioners which algorithm to choose de-
pending on the number of objectives. While all established EMOA are suitable for
bi-objective problems, optimizers for high-dimensional problems have to be chosen
carefully. The SMS-EMOA shows outstanding effectiveness. The drawback of its
exponential runtime can in the future be avoided by invoking an approximation of
the hypervolume instead of the exact calculation, so it shall additionally become
efficient.

Future research may develop new concepts for handling large numbers of objec-
tives or optimizers combining ideas from indicator-based EMOA and aggregation
algorithms like MSOPS.

The study emphasizes the necessity that new optimizers which are not dedicated
to low-dimensional problems but shall be able to handle an arbitrary number of
objectives have to be tested explicitly on many-objective problems.

An open problem is how optimizers shall be benchmarked. First attempts on
professional benchmarks are made with the CEC competition organized by [Huang
et al. (2007)). An issue is the parameterization of optimizers that influences their
performance and may make a benchmarking unfair. The following sections give
insights on the effects of parameter tuning.
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3.5 Parameter Tuning

The previous Section compared optimizers regarding the magnitudes of their
performance with the main interest whether they come close to the Pareto front or
not. This section shall analyze the performance of the SMS-EMOA more detailedly
when using tuned parameterizations. Our focus is the influence of variation oper-
ators on the performance and the potential of parameter tuning. The presentation
is based on |Wessing et al| (2010) including literally adopted parts with adapted
notation.

For single-objective EA, the variation as done in the CMA-ES gained general ac-
ceptance. The CMA-variation has been transferred to the multiobjective case by
the MO-CMA-ES but the situation of operators is yet more multifarious due to
different requirements. In order to approximate the Pareto front instead of just
one optimum as in the single-objective case, diversity in the population is an im-
portant demand which shall also be supported by the variation operators. Most
EMOA apply the operators SBX and PM by Deb and Agrawal (1995)) or variation
by differential evolution (DE, e.g. by [Storn and Price (1997)). While the first is
considered as a standard since years, EMOA using the latter gained more attention
in recent years, emphasized by their good performance in the EMOA benchmark
(with 8 participants) organized by [Huang et al. (2007) for the CEC 2007 compe-
tition. Since their success has been attributed to the DE variation, the question
arises whether the SMS-EMOA with that variation performs better than with the
usually applied SBX and PM combination.

So, we experimentally analyze the performance of the DE variation compared to
the combination of SBX and PM within the SMS-EMOA. We aim at matching
the latest standards of experimental analyses so that this study may serve as a
commendable example. According to e.g. Bartz-Beielstein et al.| (2010a, Ch. 2.6), a
comparison shall be performed with parameterizations optimized to the considered
problems so that the optimizers can max out their potential. This contrasts the
common practice in benchmarks to compare optimizers based on their default or
on equal parameterization which may be more suitable for one algorithm than
for another. Here, we perform the recommended parameter tuning using SPO
(Sequential Parameter Optimization by Bartz-Beielstein et al. (2010b))). Parameter
optimization itself is an optimization problem (cf. Sec. with unknown optima.
So we cannot guarantee to compare optimal parameterizations but only ‘optimized’
ones. The variants of the SMS-EMOA are then analyzed using the finally found
parameterizations.

The following Section describes related work and our chosen tuning method.
Section [3.5.2)specifies the experimental setup. The experiment on the academic test
problems is described in Section and the analogous study on aerodynamic
real-world problems in Section [3.5.4] Section [3.5.5] concludes this study.
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3.5.1 Preliminaries
Related Work

By considering parameter tuning as an optimization problem, in principle any
direct search optimization algorithm could be applied. Yet, there are sophisticated
methodologies dedicated to this challenging task. Methods for parameter tuning
and analyses are an active research area, a survey of the latest state-of-the-art
methods is given by Bartz-Beielstein et al.| (2010a) or |[Eiben and Smit| (2011)). We
briefly mention related techniques before detailing our chosen method SPO.
Nannen and FEiben| developed a method called Relevance Estimation and Value
Calibration (REVAC) and combined it with other techniques, namely racing and
sharpening, in [Smit and Eiben (2009). The name stands for the assessment of
the importance of a parameter on the algorithm’s performance and the parameter
tuning towards good values. The REVAC algorithm is an EA| respectively an esti-
mation of distribution algorithm, which works on a population of parameter vectors
that undergo an evolutionary optimization process. The limitations of REVAC are
that it can only be applied for numeric parameters and does not give insights (like
joint distributions for multiple parameters) into parameter interactions.

Several studies by the authors of REVAC and others analyzed the parameteriza-
tions of single-objective EA. However, this topic seemed to be neglected for EMOA.
On the other hand, parameter tuning of EA has been modeled as a multiobjective
problem due to conflicting demands, approaches are e.g. M-FETA by [Smit et al.
(2010) or performance fronts by Dréo| (2009).

REVAC and SPO seem to be the most sophisticated tuning methodologies, whereas
SPO appeared to be more suitable for our study of multiobjective performances.
Performance assessment, analyses and visualization in case of bi-objective problems
may be done by attainment surfaces (see Grunert da Fonseca and Fonseca, (2010))).
Yet the measuring via a quality indicator seems to be more suitable in combination
with SPO and three-objective test problems. SPO has been applied to EMOA for
the first time by |Naujoks et al.| (2006)). They optimized the SMS-EMOA regard-
ing its population size and the choice of its variation operator, i.e., had a more
course-grained perspective compared to our study that includes the optimization
of variation operators’ parameterizations. Wessing and Naujoks| (2010) describe a
preliminary study to this work, focusing on the stability of SPO and the suitability
of indicators.

Sequential Parameter Optimization (SPO)

For parameter tuning, we apply the method Sequential Parameter Optimization
(SPO) by Bartz-Beielstein et al.| (2005) realized in the SPO Toolbox (SPOT) by
Bartz-Beielstein et al.| (2010b)) briefly described here.

The main idea of SPO is to treat optimizer runs as experiments, using methods from
Design of Experiments (DoE), cf. Montgomery| (1997)), and Design and Analysis of
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3 Characteristics of Hypervolume-based EMOA

Computer Experiments (DACE), cf. Sacks et al.| (1989). The optimizer’s exogenous
parameters, which are set before the start of the optimization are considered as
the experiment’s design variables that are sought to be optimized. SPO expects a
region of interest (ROI) in the search space specified for each parameter. Then SPO
starts by initialization in the ROIs according to a latin hypercube sampling (LHS)
(see Bartz-Beielstein et al. (2010b))). A scalar value is required to describe the
optimizer’s performance, for which a quality indicator is chosen analogously to the
selection within an EMOA. Based on these evaluations a surrogate model is built,
in our case DACE Kriging by |Lophaven et al. (2002)). As the optimizer’s results
are stochastic, each point is sampled several times and the results are averaged.
In an optimization loop, the model is then used to predict promising parameter
configurations. The new candidates are evaluated and the data is fed back into the
model. If no new best configuration is found in a step, the number of repetitions
is increased.

3.5.2 Setup of Experimental Analysis

We describe the studied variation operators, academic test and real-world problems,
and the performance measures to evaluate the optimizers’ results. The experiments
are then documented using the reporting scheme by [Preuss (2007)).

Variation Parameters to be Tuned

We consider the variation operators SBX and PM compared to the variation ac-
cording to differential evolution (DE).

SBX and PM are described in Section [3.1} Recall that the parameters 7,,7,, € R*
control the variance of the distributions. The application of SBX to create an
offspring is determined by p.. The application of altering a variable of the offspring’s
genome via PM is given by p,,, and decided independently for each variable. The
combination of SBX and PM is referred to as SBX in the following for convenience.
For variation via differential evolution (DE) the variant by [Storn and Price| (1997)
is considered with an alteration. In the original, the offspring only compete with
their parents in the selection to keep changes local and maintain diversity in the
population. However, we want to consider DE as a variation operator only. Three
parents are chosen uniformly at random and a fourth parent is copied to generate
an offspring. Then each variable is proceeded as follows (cf. Algorithm [3.8): The
difference of the first two parents, weighted by the parameter F' € [0, 2], plus the
third parent replaces the variable of the offspring, in case that a random number is
smaller than the parameter C'R, or the index of the variable equals a random index
chosen before, assuring that this procedure is executed at least once. Otherwise
the offspring keeps the variable of the fourth parent.
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Algorithm 3.8: DE variation

input - parents x(V), x® %3 x@ from population P®, parameters F,
CR
output : offspring y
1 index < choose uniformly at random from {1,...,n}
2 fori=1tondo
3 if (i == index) or (rand() < CR) then /*rand() ~ U(0,1) */
4 L Yi :1:'2(3) + F(xz(l) — :IZ‘Z(»Q))
5 else
6 t Yi x§4)

Performance Measures

In multiobjective optimization, it is recommended to use more than one perfor-
mance measure, yet SPO can handle only one. In the study by Wessing and
Naujoks| (2010) three quality measures, namely the hypervolume, the additive ep-
silon indicator .., and the R2-indicator Irs (see Zitzler et al. (2008a)) for detailed
definitions) have been considered each for the performance assessment within SPO.
Thereby, the SPO optimization guided by the hypervolume achieves the best re-
sults. So, we here focus on the hypervolume only as it seems to be the most suitable
measure for SPO.

Test Problems

From the CEC 2007 testbed by Huang et al| (2007) we have chosen the two-
objective problems OKA2, SYM-PART, the shifted as well as rotated variants
of ZDT problems, and three-objective DTLZ and WFG problems, so 13 functions
in total. Note that the results are not directly comparable to others obtained
before in the environment of the CEC 2007 contest, since a number of bugs in the
implementation of the benchmark have been fixed.

The second experiment studies two aerodynamic problems. The design of an air-
foil represented as Bezier splines is optimized w.r.t. different objective functions.
NACA is a two-objective redesign problem, see Naujoks et al.| (2002) for a detailed
description. Two target airfoils with one being nearly optimal for the take off phase
(with high lift) and the other for the cruising phase (with low drag) are given. An
airfoil shall be designed such that the differences of the pressure distributions to
the two target airfoils are minimized as the two objectives. Compromises between
the two target airfoils describe the Pareto front with the targets as its extremes.
The problem RAE 2822 (referred to as RAFE) is the drag minimization of an airfoil
for three flow conditions as objective functions (cf. Emmerich et al.| (2006))). Several
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Fig. 3.15: Boxplots show the performance distributions in terms of dominated hypervol-
ume (HV) of 20 SPO runs. Additional lines mark the default SBX (solid) and
DE (dashed) configurations’ mean performance.

constraints shall guarantee that the differences to a reference airfoil are not too
strong. Geometric constraints can be checked without flow simulation, whereas
aerodynamic performance constraints like lift and pitching moment are checked
after the completed evaluation via computational fluid dynamics simulations.

3.5.3 DE vs. SBX on CEC 2007 Problems

Research Question How does DE compare to SBX variation on the CEC 2007
test case collection by Huang et al.| (2007))?

Preexperimental planning For the experiment’s preparation, some SPO runs
were carried out to determine the parameters’ regions of interest (see Tab. [3.8).
Additionally, the optimization of SBX configurations on OKA2 and S_ZDT2 with
1,000 problem evaluations was repeated 20 times, to get an estimate of SPO’s re-
liability. It is not necessary that SPO always delivers the same parameterization
as the optimized one, because not all parameters have influence on the perfor-
mance. But it is desired that an algorithm set up with the final parameterization
achieves Pareto front approximations of similar quality. Fig. shows that the
performance could be increased in all cases and we regard the variance as small
enough for meaningful comparisons, even when only one SPO run is performed per
problem. The tuned parameter configurations will be called DE* and SBX* in the
remainder.

Task After SPO has finished, the new configurations are run 50 times and eval-
uated via the hypervolume. These samples are compared to same-sized samples of
the default configurations and each other. For each comparison, a two-sided U-Test

134
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(see Hollander and Wolfe (1973)) is employed. The null hypothesis is that there is
no difference in the medians and we require a significance level of 5% to reject it.

Setup SPO is applied to all 2-objective and 3-objective test problems in the CEC
2007 suite. The contained 5-objective problems are excluded, because of the SMS-
EMOA’s high runtime on these. Two different run lengths, namely 500d and 5000d
function evaluations with d denoting the number of objectives, of the SMS-EMOA
are examined to detect possible floor or ceiling effects. [...] Tables and
[3-9 show the regions of interest and the setup for the experiments. The default
parameters for DE variation are chosen according to |Kukkonen and Lampinen|
(2007)). DE’s lower bound for p is higher than that for SBX, because it uses more
parents for variation. The performance evaluation is generally done according to
the CEC 2007 contest rules by Huang et al.| (2007)), i.e., the whole objective space
of each problem is approximately normalized to [1,2]¢. The reference point of the
hypervolume is then set to (2.1,...,2.1)", although Wessing and Naujoks| (2010)
show that the whole approach can have drawbacks on some problems.

Tab. 3.8: The default values and region of interest (ROI) of parameters. The ROI is the
range on which the search is conducted.

DE SBX

Param. HDE CR F HSBX Ne Im DPec Pm

Default 100 01 05 100 200 150 1.0 0.1
ROI {6,...,120} [0,1] [0,2] {3,...,120} [0,40] [0,40] [0,1] [0,1]

Tab. 3.9: Setup of the experiment on CEC 2007 test problems.

Problems Two- and three-objective CEC 2007 problems
SPO budget 500 algorithm runs

Algorithm initialization Uniform random

Stopping criterion 500d and 5000d problem evaluations

Algorithm SMS-EMOA

Parameters DE: u, CR, F; SBX: 1, Ney, s Des Pm

Initial experimental design Latin Hypercube (50 points, 3 repeats per point)
Performance measure Hypervolume

Results/Visualization Tables and show the performance results of DE
and SBX variation. Optimized configurations that are significantly better than the
competing optimized configuration are highlighted in bold face. Figure [3.16] shows
parallel plots of the configurations. More details on the parameter configurations
are provided by [Wessing| (2009)).
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Fig. 3.16: Parallel plots of best parameter configurations found by SPO. Parameters for
all 13 test functions are shown in light gray. Default configurations are marked
as dashed lines. Results from the experiment on aerodynamic problems in

Sec. @ are shown as blue bold lines.

Observations SBX reaches |[...| better mean values than DE for all test cases.
For 500d problem evaluations, SBX* is better than DE* on ten problems, while
the opposite is true on only two problems (there is one tie). For 5000d evaluations,
SBX* wins seven times and DE* four times (there are two ties). Except for SBX*
on R_7ZDT4, both operators can always improve significantly compared to their
default configurations. Figure|3.16/shows that small population sizes should be used
on the short runs. Especially for long runs, low values of p,, are a good choice. It
also seems to be promising to choose CR > F. The rest of the parameters does not
follow any general trend.

Discussion The experiment shows that the decision which variation is chosen is
less important than the decision to tune the chosen variation operator, because
the differences between the default and optimized configurations are much bigger
than between different optimized configurations. It is also obvious that the default
setting is completely opposing the optimal configuration on some problems. SBX*
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Tab. 3.10: Mean hypervolume and standard deviation with 500d evaluations.
Problem SBX SBX* DE DE*

OKA2 0.5053 =£0,013 0.5450 =0,011 0.4976 0,013 0.5322 =£0,021
SYM-PART 1.1640 40,009 1.2063 =+0,001 1.0335 =+£0,023 1.1935 =+£0,011
S _ZDT1 1.0189 =£0,020 1.1024 +0,015 0.8706 =+£0,019 1.0403 =+0,026
S ZDT2 0.9488 £0,023 1.0496 =£0,042 0.7451 =+0,028 0.9422 =£0,033
S _ZDT4 0.9505 =+0,027 1.0407 =£0,043 0.8489 =£0,025 1.0546 =£0,027
R _7ZDT4 1.0994 +£0,018 1.1214 =+0,039 1.0605 =£0,022 1.1350 =+£0,024
S _ZDT6 0.7340 +0,011 0.7592 =£0,016 0.6573 =£0,007 0.7013 =£0,011
S DTLZ2 1.3270 +£0,001 1.3291 =£0,002 1.3189 +0,003 1.3290 =+£0,001
R_DTLZ2 13100 #£0,009 1.3204 40,008 1.2531 40,024 1.3243 =+0,003
S DTLZ3 1.3165 =£0,003 1.3304 +0,001 1.3054 =+£0,005 1.3257 =0,003

WFG1 0.9051 £0,005 0.9936 40,005 0.8677 =£0,012 0.9084 =£0,008
WFGS8 1.1101 +0,014 1.2231 =£0,009 1.1062 =+£0,015 1.1985 =£0,009
WFG9 1.1651 +£0,020 1.2147 =+0,013 1.1474 =£0,024 1.2012 +£0,019

Tab. 3.11: Mean hypervolume and standard deviation with 5000d evaluations.
Problem SBX SBX* DE DE*

OKA2 0.5610 =£0,010 0.5725 £0,011 0.5480 =+£0,008 0.5676 =+£0,010
SYM-PART 1.2074 43.0e-4 1.2095 +1.4e-4 1.1194 +£0,012 1.2098 £4.0e-5
S _ZDT1 1.1508 =£0,004 1.1684 =+£0,005 0.8755 40,012 1.1686 +0,002
S ZDT2 1.0668 =£0,006 1.1271 +£0,009 0.7394 =£0,023 1.0928 =+£0,018
S _ZDT4 1.1241 #£0,015 1.2029 +£0,003 0.8441 40,020 1.1654 =+£0,011
R_7ZDT4 1.1908 +£0,010 1.1933 =+0,008 1.0845 +£0,015 1.1923 40,006
S_ZDT6 0.8658 +£0,007 0.9293 40,024 0.6584 +£0,004 0.9574 +0,016
S DTLZ2 1.3301 =£1.1e-5 1.3302 +4.0e-6 1.3224 +£5.7e-4 1.3302 =£1.6e-5
R_DTLZ2 1.3296 =£3.2¢-5 1.33000 +3.2¢-5 1.2638 =£1.3e-2 1.32997 +4.2¢-5
S DTLZ3 1.3306 £2.3e-4 1.33099 £1.4e-5 1.3028 H42.2e-3 1.33097 £2.1e-5

WFG1 0.9684 =£0,003 1.0803 £0,017 0.8929 +£0,005 1.0633 =+£0,025
WFGS8 1.2197 £0,005 1.2702 £0,003 1.2003 =£0,046 1.2615 =£0,003
WFG9 1.2459 =£0,007 1.2592 =+£0,008 1.1894 =£0,007 1.2607 +0,010

winning more often might be due to a biased set of problems. The result is more
balanced on the longer runs, so it would be interesting to test if DE* performance
increases for run lengths extended even further.

3.5.4 DE vs. SBX on Aerodynamic Problems

From the academic test cases we have learned that optimal parameterizations differ
considerably. As a consequence, there is no general near-optimal default parame-
terization. However, this could be due to artificial structures of the academic test
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cases. Therefore, the next experiment shall reveal whether our insights gained so
far are transferable to real-world problems.

Research Question How does DE compare to SBX variation on examples of
real-world problems? How do the results compare to the ones from the previous
experiment?

Preexperimental planning As real-world problems from the aerodynamic field,
the bi-objective NACA and the 3-objective RAE are chosen (cf. Section. The
problems have been subject of previous studies, see Beume et al.| (2007)*, [Emmerich|
et al| (2006), Naujoks et al| (2002). Due to the large calculation times for the
computational fluid dynamics simulations, a restricted number of 1000 objective
function evaluations is allowed and the SPO budget is slightly decreased to 300

algorithm runs (see Tab. |3.12)).

Task See the previous experiment in Section [3.5.3]

Setup The airfoils are represented as Bezier points with 6 degrees of freedom
for NACA, and 18 for RAE. For RAE, the initial population always includes the
baseline design. The default configurations and regions of interest are identical
to the first experiment (see Tab. [3.8). Table shows the differences in the
experimental setup compared to the experiment in Section [3.5.3] The reference
point is set to (0.4,0.4)7 for the NACA problem and (10,10,10)" for the RAE
problem.

Tab. 3.12: Settings for experiment on aerodynamic problems that differ from Tab.

Problems NACA, RAE

SPO budget 300 algorithm runs

Stopping criterion 1000 problem evaluations

Initial experimental design Latin Hypercube (25 points, 4 repeats per point)

Results/Visualization Table shows the found optimized configurations, which
are also included in Fig. [3.16] as bold lines. Table shows the performance re-
sults.

Observations All optimized configurations are significant improvements over their
default configurations. The difference between SBX* and DE* is not significant
on NACA, but on RAE. The possible improvements by parameter tuning can be
gleaned from Tab. [3.14k SPO is able to improve the NACA values by 2.7% using
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Tab. 3.13: Parameter results on the aerodynamic problems

DE Configuration SBX Configuration
Problem  upg CR F HSBX Ne T Pe Pm
NACA 21 0.90 0.34 10 0.16 15.43 0.06 0.68
RAE 14 0.76 0.71 10 20.50 34.24 0.01 0.48

Tab. 3.14: Mean hypervolume and standard deviation on aerodynamic problems

Problem SBX SBX* DE DE*
NACA 0.1462 £ 0.0012  0.1501 £ 0.0007  0.1467 £ 0.0009  0.1502 £ 0.0007
RAE 993.663 £+ 0.005  993.844 £ 0.022  993.672 £ 0.033  993.869 £ 0.041

SBX* and 2.4% featuring DE*. However, the results on RAE cannot be improved
accordingly, here the improvements are about 0.02%.

Interestingly, the same population size is identified for SBX variation on both test
cases. For DE*, a roughly similar population size was identified for the RAE case
as well, while the best value for the NACA case is about twice as big. Concerning
the operators’ probabilities, SBX* variation focuses on mutation. The application
probabilities for the recombination operator are very small, which means that 7.
cannot have much influence. Generally, it is remarkable that SBX* and DE* are
completely opposed to the default configurations.

Discussion The improvement seems so low on RAE, because the initial popula-
tion always contains the mentioned near-optimal baseline solution, which already
dominates a hypervolume of 993.662. But in fact, the default SBX configuration
fails to find any other feasible solution in 49 of the 50 runs. The default DE config-
uration ‘only’ fails in 39 runs. DE* and SBX*, on the other hand, achieve success
rates of 100% for this measure.

3.5.5 Conclusions

Responding the recent popularity of DE variation, we studied the performance of
the SMS-EMOA with this variation compared to its usual operator combination
SBX and PM. Thorough experimental analyses have been performed as a parameter
tuning study using SPO, on academic test problems as well as on aerodynamic real-
world problems.

The main results are: (1) The performance of the tuned operators improved sig-
nificantly compared to the default parameterizations. (2) The performance of the
two tuned variation operators is very similar. (3) The optimized parameter config-
urations for the considered problems are very different.
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So, our experimental analyses could not verify any advantage of the DE variation
over the combination of SBX and PM, at least not within the SMS-EMOA. More
general than that, our study puts the common practice of benchmarking and tuning
studies into question.

The study shows exemplarily that parameter tuning has more potential of perfor-
mance improvement than the choice of a supposedly better operator. So, tuning
shall always be performed before a conclusive rating of methods; it shall become
standard. For academic benchmarks, this means that comparing EMOA without
considering parameterizations is unfair and may give misleading hints like in the
CEC 2007 competition by Huang et al.|(2007)) regarding DE variation. As described
by Bartz-Beielstein et al. (2010a), Ch. 2.6), a comparison based on equal or untuned
parameterizations is inappropriate. Instead the tuning shall be part of the bench-
marking. For contests, we recommend to dedicate a budget of function evaluations
for parameter tuning and maybe specifying the tuning method. In publications
presenting a new optimizer, the new method is typically parameterized with ex-
pert knowledge but tested against standard optimizers using default parameters.
It is desirable to quantify the effort put in finding good parameterizations and to
study ranges of parameters and their sensitivity.

For practitioners our message is analogously: Instead of investing time on a com-
prehensive study of methods, quickly choose one optimizer and invest the time to
adapt it to your problem. Do not expect default parameterizations to perform well.
When parameter tuning is performed, it is still common practice to do this with a
chosen optimizer on a test problem which is efficiently evaluable instead of the ac-
tual problem. Our study demonstrates that this procedure is not promising, since
the optimized parameter configurations for the academic test suite differ a lot from
those for the real-world problems. It cannot be expected that parameterization
performing well on one problem do so on another.

Although parameter tuning is elaborate, this tool shall not be neglected due to the
significant potential. When evaluations of the optimization problem are too time-
consuming, an alternative is to perform the tuning on a surrogate model instead.
Preuss et al| (2010) achieved successes with this approach and demonstrate that
the EA using the gained tuned parameterization outperforms the EA using the
default parameterization on the original problem.

Professional tools for parameter tuning are available with SPOT and REVAC (cf.
Nannen and Eiben| (2007)) but parameter tuning requires considerable resources.
To reduce the time spent on expensive function evaluations, further investigations
on the suitability of surrogate models instead of original problems for parameter
tuning are desirable. Moreover, the interaction of parameters is interesting and
dependencies and sensitivity analyses shall give valuable insights.
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3.6 Hybrid Hypervolume-Gradient Metaheuristic

While the previous sections dealt with the SMS-EMOA or its components, this sec-
tion presents a hybridization of the SMS-EMOA with an additional hypervolume-
based technique as a new multiobjective optimizer. The new technique performs
a steepest descent according to the gradient of the hypervolume of a population
of points, thereby optimizing the positions such that their hypervolume is maxi-
mized. The presentation is based on Emmerich et al.| (2007)* and so are the literally
adopted parts with notation adapted to this document.

Hybridizations shall join the advantages of several methodologies. The SMS-EMOA
performs satisfactorily, yet it might be improvable with additional techniques. We
see potential in gradient-based methods, which are highly recommended when gra-
dient information is available, but even promising when the gradient has to be
estimated. The methods are local optimizers that are applied for convergence to
a local optimum in order to refine or improve a starting solution to make the best
possible use of its potential.

The gradient of the hypervolume of a set of points is introduced, and the optimiza-
tion guided by this gradient increases the hypervolume of the set by determining an
improved position for all points at once. Special care has to be taken for dominated
points when no local movement can make them non-dominated so that the popula-
tion’s hypervolume remains unchanged. A penalty approach is introduced to make
the gradients non-zero. Analytical calculation as well as empirical approximation
of the gradient are discussed. A steepest descent method guided by the hyper-
volume gradient is introduced as a multiobjective optimizer. This method is then
hybridized with the SMS-EMOA in a high-level relay hybrid (cf. Talbi (2002))). The
SMS-EMOA is executed first to roughly approach the population along the Pareto
front. The gradient method takes the final population of the SMS-EMOA as its
input and performs a fine-tuning of the points’ positions according to the hypervol-
ume maximization. The hybrid optimizer is studied on bi-objective academic test
problems of the ZDT suite, amongst others comparing different switching times
of the optimization methods. The proposed method is especially tested with a
low budget of function evaluations that shall investigate its suitability for real-
world applications which cannot afford tens of thousands time-consuming function
evaluations.

The following Section gives an overview of related work including other hy-
bridizations with the SMS-EMOA, and the used mathematical notation. In Sec-
tion the hypervolume gradient of a population of points is defined and its an-
alytical as well as empirical calculation are described. A steepest descent gradient
method using the hypervolume gradient is introduced in Section[3.6.3] Section[3.6.4]
presents experiments of a relay hybrid of the SMS-EMOA and the gradient-based
optimizer. Section [3.6.5] concludes this topic.
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3.6.1 Preliminaries

This section gives an overview of related work, especially referring to other hy-
bridizations of the SMS-EMOA. Afterwards, the mathematical notation required
for the gradient is introduced.

Related Work

Other hybridizations related to the hypervolume have been considered and are
briefly reviewed.

Koch et al.| (2009)* couple the SMS-EMOA respectively with the following three lo-
cal search methods. The direct search methods by |Hooke and Jeeves (1961)) searches
along coordinate axes and minimizes in this multiobjective scenario the weighted
Tchebycheff distance to a utopian point. The first order method of multi-objective
steepest descent according to Fliege and Svaiter (2000)) performs a steepest descent
search in the cone of dominating solutions, where the direction is calculated based
on the Jacobian matrix. The second order Newton method was transferred to the
multiobjective case by [Fliege et al.| (2009). The SMS-EMOA is coupled with the
first two above methods in a relay, where the final population of the SMS-EMOA is
then refined by the local search method. A concurrent hybrid of the SMS-EMOA
and the multiobjective Newton method is presented where it is probabilistically
decided whether the local search is performed for offspring. Experimental analyses
are performed on the ZDT suite, where different switching schedules between the
methods are studied.

Vol et al.| (2008)* compare the MO-CMA-ES (cf. Sec. against hybridizations
of the single-objective CMA-ES with scalarization approaches. The scalarization
is performed via a weighted sum or the Tchebycheff method which is as opposed
to the former able to approach any Pareto-optimal point. Experimental analyses
are performed on established bi-objective function, including the ZDT suite. The
Tchebycheff-based optimizer outperforms the one using the weighted sum, whereas
both hybrid optimizers are outperformed by the MO-CMA-ES on most considered
functions.

Besides the methods above, several hybridization for multiobjective optimization
have been developed, whereas most aim at improving single points instead of a
whole set like in our approach. Similar to [Fliege and Svaiter| (2000)), Bosman and
de Jong (2006)) aim at searching the cone of dominating points by local mutants.
Similar to our approach Schiitze et al.| (2005) use a gradient-based search to approx-
imate a well-distributed set by means of Karush-Kuhn-Tucker points, which is only
conditionally possible. Shuklaj (2007) discusses the hybridization of NSGA-II with
two gradient based local search operator, thereby estimating the gradient with the
help of a perturbation technique. Sindhya et al.| (2008]) as well combine NSGA-IT
with a local search method with the help of an achievement scalarization function.
Lately, Hughes (2011)) presented an algorithm called MODELS which combines
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the weight vector aggregation techniques from MSOPS with a golden section line
search algorithm, yielding competitive results. Moreover, the calculation of the hy-
pervolume gradient relates to the work on optimal p-distributions by |Auger et al.
(2009a) which as well seek to position all points optimally.

Mathematical Notation

To compute the hypervolume of a population, we use the following representation
as a population vector.

Definition 3.43 The representation of u population members x) € R”, i =
1,...,u, in the search space is combined to one vector of length un called pop-
ulation vector:

p= (xgl),...,a:g),...,a:%“),...wg{‘))T = (pl,...7pu.n)T.

The mapping from population vectors back to populations can be realized as

U(p)={{ (&, .. e |i=1,... u}} (3.23)

F denotes the function evaluation of points according the objective function f(x),
while maintaining their structure as

F(xD, -, x®) = (fFxD), f(x?), ..., f(x®))T (3.24)
or respectively

FO{xW o x® 3} ) = {{ FED), fx®), o f(x™) 3 (3.25)

The optimization of the hypervolume is then performed on evaluated population
vectors, as

H(p) := H(F(¥(p))), (3.26)

which is a valid representation as the global optima of this problem can be mapped
back to the global optima of the hypervolume defined on sets. The representation
with population vectors usually introduces additional local optima as permuting
the positions of points in the vector results in the same population.

For notational convenience, we write the hypervolume briefly without a reference
point and apply it directly to an argument list of vectors instead of a set of vectors,
using the above mappings implicitly.

In summary, the following mappings are applied to express the gradient of the
hypervolume:

. F . H
RH™ — R#4 — R*.  (3.27)
~— ~—
decision to objective space objective space to hypervolume
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3 Characteristics of Hypervolume-based EMOA

3.6.2 Hypervolume Gradient

A general definition of the hypervolume gradient for the space of population vectors
is

-
VH(p) = (g—g, e gp—i) (3.28)
[...] Using the chain rule the gradient can be rewritten as
VH(F(p)) = (HoF)(p) = H'(F(p))- F'(p) (3.29)
as detailed in the following. Let x(1), x(®) .. x® be 1 points in the decision space,
then VH(p) can be written as:
F(x) f"at x(V 0 0 --- 0
o | FEP) | O F ot x 0 o 0 (3.30)
Fx) 0 00 0 fatx®

The top level structure of the matrix associated to the linear mapping F’ is a diag-
onal matrix of size u whose diagonal elements are matrices of size d x n associated
to the linear maps f’ at x9), where j = 1,2,..., 4 and each of the off-diagonal
elements is the zero matrix of size d x n as well.

A more detailed description of this matrix is given as:

(1) (1)
Bf(;(J(‘l) ) L. afl(’(‘l> ) o0 ... 0 0 0
e Oz,
"o ! : : :
9 1 . . . . . . . . .
o 952 (xD) 214Dy 0 0 0
. BT C NP CD I T T
: q Owxy,
_OH _ . .
oy 0 0 Do 0 0
: . (3.31)
_OH _ . .
oy 0 0 ST 0 0
: af1 (1) af1(x(1)
: Ut 7)1
OH 1 "
ay((iu)
(n) 9 fq(x(H))
(D) () 0 0 0 ... 0 &) 8fa()
VH(y seens Y ) 8:0(1”) 315#)

F/(x(l)’,“,x(l’«))
with y@ = f(x®). Note that F'(x") ... x) depends solely on the gradient

functions Vf; at the sites x™, ... x" . Hence, if these d - 1 local gradients are
known, the desired gradient VH (p) can be computed.
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3.6 Hybrid Hypervolume-Gradient Metaheuristic

Distinguishing Types of Sets

The computation of VH(y™, ..., y®) is discussed next. Three cases of the set
{y® ...y} need to be considered: (1) mutually non-dominated sets, (2) sets
with strictly dominated points, and (3) sets with edge points.

77777 y(l) r
/ yO = @)

. z

y(:)/— W, 45”)

fi

Fig. 3.17: Partial derivative of the hypervolume for d = 2 and non-dominated sets. The
lengths of the line-segments of the attainment curve correspond to the values
of the partial derivatives of H. Only for boundary points do the values of the
partial derivatives depend on the reference point.
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Fig. 3.18: Partial derivative for d = 3. By changing a point y9 differentially in the j-th
coordinate direction, the hypervolume grows with the area A§i) of the ‘visible’
face of the exclusively contributed hypervolume of that point in the direction
of the movement. Hence Ay) is the partial derivative 0H/ ayj(»i).
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3 Characteristics of Hypervolume-based EMOA

f, A

Fig. 3.19: The penalty function is defined as the sum of the Euclidean distance (dashed
lines) of the dominated points (gray) to the attainment curve (solid line) shaped
by the non-dominated points (black) and bounded by the reference point r. The
penalty is subtracted from the hypervolume value to give an influence to the
dominated points.

Mutually non-dominated sets. For d = 1 holds 2% = 1, and for d = 2 holds
Y1

(assuming vectors y¥ are sorted in descending order of f):

aH i— 7 8[’[ 71— 7 .
( 1)_yé) and ﬁ:y§ 1)_y§)7 Zzla"w/JJ (332)
Y

Dy J2
dy.”

as illustrated in Fig. 3.17 Note that boundary points need special treatment, as
their contribution to the gradient is influenced by the reference point. In three
dimensions (d = 3), the computation of the partial derivative gets more tedious.
The general principle is sketched in Fig. [3.18

Sets with strictly dominated points. The gradient equals zero in case of domi-
nated points—provided that a slight perturbation does not make them non-domi-
nated—since no improvement of the hypervolume can be observed for any move-
ment. Therefore, dominated points do not move during a search with gradient
methods but just remain in their position. To enable an improvement of domi-
nated points, a penalty value can be subtracted from the hypervolume value, that
is negative if and only if points are dominated and otherwise zero. For each domi-
nated point, the minimal Euclidean distance to the attainment surface shaped by
the non-dominated points is calculated (Fig. [3.19). The sum of these values is
subtracted from the hypervolume value of the whole set of points. This way, the
movement of dominated points influences the improvement of the penalized hyper-
volume and a local gradient of the dominated points is computed that points in
the direction of the nearest point on the attainment curve. In a gradient descent
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3.6 Hybrid Hypervolume-Gradient Metaheuristic

method the movement of the non-dominated points is delayed by the dominated
ones. Anyway, this drawback is a smaller deficit than completely losing the domi-
nated points. Since any non-dominated point contributes to the hypervolume value,
the primary aim is to make all points non-dominated.

A <0 (0D D 4 Ay
case Ayy” <0:(y,", vy + Ayy”)
1

f

Fig. 3.20: Partial derivative for edge points in a 2-dimensional objective space. These
points are dominated but not strictly dominated.

Sets with edge points. Points that are dominated but not strictly dominated
(called edge points) lie on the attainment surface of the non-dominated points.
Slight movements can make the points either remain weakly dominated, become
strictly dominated or non-dominated. Thus, the gradient at these points is not

continuous. The left-sided derivative 87(5{ may be positive, while the right-sided
y

J

o+ H
y”

termined as the length of the segment of the attainment curve. Let y2) determine
the neighbor of the edge point y on the upper left corner of the attainment curve,
and y#) the neighbor on the lower right corner (see Fig. [3.20). If the point y®

lies on the segment y(z) to (ny),yéiL))T, then g+g = 0 and ‘;7({{ = ygiR) — ygi)
Yq yz. )

(see also Fig. ; else if the point lies on the segment y#) to (yim), yém)T, then

o~H _ L) orH

8y§1> 2 8yé1)

differentiable at edge points makes it problematic to work with gradient-based

methods that make use of second order derivatives.

derivative is always zero. For d = 2 positive one-sided derivatives can be de-

— y; and = 0. The fact that H(p) is in general not continuously

Edge points can also cause non-dominated points to have discontinuous local deriva-
tives, which is comprehensible by arguments similar to the ones above. Besides
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3 Characteristics of Hypervolume-based EMOA

degenerated points in the search space can cause discontinuous derivatives. These
are, loosely defined, search points |[...] with the same image.

Empirical Gradient Determination

In practice the computation of the gradient can be approximated for example by
using numerical differentiation. Since there may be points which are not continu-
ously differentiable, we need to take one-sided derivatives in both directions into
account. For a small positive € we compute them via:

OH - H((pl,...,pl-j:e,...,p#n)T):I:H((pl,...,pi,...,pﬂn)T)
Ip; €

(3.33)

The algebraic signs we need to use depend on the gradients of the objective function.
In case of continuously differentiable objective functions, it is numerically safer to
compute the derivatives of the objective functions first, and then use the chain rule
to compute the derivatives of the hypervolume taking special care of the different
types of sets as described above. Both the computation of Equation (3.33)) and
the computation of the gradients of all objective functions at all points (that can
be used to compute the gradient via the chain rule) requires un evaluations of the
objective function vectors.

Analytical Solution of Hypervolume Maximization

To demonstrate the exact calculation of the maximal hypervolume by means of
partial derivatives, an example is given in Lemma for a linear Pareto front.
The hypervolume is maximal when the points are equally spaced over the Pareto
front. The Pareto front is due to the definition of a scalable generalized Schaffer
problem by |[Emmerich and Deutz (2007), which is also considered for proof of
concept experiments in Section

3.6.3 Gradient-based Pareto Optimization

Due to the known problems with second-order gradient methods, which require
twice continuous differentiability, a first-order gradient method, namely the steep-
est descent/ascent method with backtracking line search has been implemented
(cf. Boyd and Vandenberghe| (2006])). The pseudo-code of our implementation is
provided in Algorithm [3.9 The line-search algorithm has been kept simple to
maintain transparency of the search process. It will however converge to a local
maximizer relative to the line search direction. Note, that the line search may
move to the same point in two subsequent iterations. In this case the evaluation of
the objective function vectors of the population can be omitted. The convergence
speed and accuracy of the line search can be controlled with the parameters 7 and
Smin, respectively. The stepsize s is decreased via the reduction parameter 7 and
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3.6 Hybrid Hypervolume-Gradient Metaheuristic

Algorithm 3.9: Gradient-based hypervolume maximization

(cf. Emmerich et al.| (2007)*)

input : initial population as population vector p

parameters: accuracy of line search Sy, step size reduction rate 7 € (0, 1)
1 s+ 1.0 /* initialize step size s */
9§ O;pbest — pO
3 v <« VH(p) /* initialize search direction */
4 while [v| > ¢ do

5 s< 1.0

6 while s > s,,;, do /* line search in gradient direction */
7 preY ¢+ pPest + sv( /* try positive direction */
s || i HOP(R(pR)) > H(F(8(p"™))) then

9 pret «— phest — sv(® /* try negative direction */
10 if H(F(U(p"))) > H(F(U(p™"))) then

11 S4=S8-T /* no success: reduce step size s */
12 prev « plest /* new best point is old best point */
13 pbest — pnew

14 | v« VH(pr®), i+ i+1 /* compute new gradient direction */

15 return p®et

the line search is performed as long as s > sp,;, holds. Since the length of the gra-
dient decreases when the algorithm converges to the optimum of a differentiable
function, s.;, does not have to be very low, because the length of the gradient in-
fluences the step-size as well. In case of unknown exact gradients, the gradients are
approximated via (3.33) at the cost of un function evaluations. The hypervolume
is thereby computed w.r.t. a fixed reference point.

3.6.4 Experiments on SMS-EMOA-Gradient-Hybrid

Since the gradient optimizer has been conceived as a fine-tuning of a Pareto front
approximation, it does not seem to be promising as a stand-alone optimizer. There-
fore, it is hybridized with an EMOA, and we choose the SMS-EMOA for this task.
The SMS-EMOA generates a rough Pareto front approximation, and the gradient
optimizer take the SMS-EMOA’s final population as its input. This hybridization
scheme is called high-level relay hybrid in the taxonomy by [Talbi (2002)). Relay
denotes the sequential execution of the algorithms and high-level means that the
algorithms are applied in their original versions, not just taking parts of them.

Note that the SMS-EMOA is applied in a version without internal reference point
(cf. Sec. B.1]). Only bi-objective problems are considered here, and for these holds
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3 Characteristics of Hypervolume-based EMOA

that only the hypervolume contributions of the boundary points, i.e., the points
without worse neighbors in one objective, depend on the reference point. These
points are selected to be always kept in the population, which works in fine in case
of d = 2 but not in higher dimensional spaces as discussed in Section [3.4]

In the following experiments, a budget of function evaluation is partitioned among
the algorithms, so that the time of switching over is a parameter of the hybrid
algorithm.

Experiments on Generalized Schaffer Problem

We conducted two experiments to analyze the limit behavior of the hybrid algo-
rithm on the generalized Schaffer problem (cf. Section [3.6.2)) defined as follows.

Definition 3.44 The generalized Schaffer problem (cf. Emmerich and Deutz (2007)
is defined as f = (f1, fa) with

filx) = n—la (Z x?) and fy(x) = n—la (Z(l - %)2)

=1 =1

with x € [0,1]",« € RY and both objectives to be minimized.
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Fig. 3.21: Hypervolume achieved by the hybrid optimizer using different switching times.
In the legend, the first number denotes the number of evaluations of the SMS
part and the second of the gradient part.
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3.6 Hybrid Hypervolume-Gradient Metaheuristic

A simple version has also been considered in Section as T1. In a preliminary
study, we consider the generalized Schaffer problem with n = 10 and o = %,
hence the Pareto front equaling {(y1,v2) | y2o =1 — y; and y; € [0,1]} is linear (cf.
Section . Recall that, due to Theorem , we know that the hypervolume of
this problem is a strictly concave function, so that the gradient method converges
to the global optimum. Experiments with the gradient method, initialized with a
population evolved over 1000 iterations by SMS-EMOA, show that the convergence
is indeed linear for small population sizes of e.g. u = 5, and almost linear for higher
population sizes. The dimension of the problem’s search space seems to have less
influence on the convergence rate.

Fig. [3.21] shows the results for the generalized Schaffer problem with o = 1, the
dimension of the search space n = 10, and p = 10. Typical runs are shown, where
the SMS-EMOA is always started using the same random seed.. The Pareto front
is equal to {(y1,%2) | ¥2 = 1 —2/y1 +y1 and 0 < y; < 1} and the maximally
attainable hypervolume is 1 — % ~ 0.833333. The limit behavior of the hybrid
optimizer using different switching times are compared. The discontinuities in the
progress correspond to the end of a line search, and a gap indicates that function
evaluations are spend on the un = 100 gradient calculation. The picture shows that
once the gradient part of the hybrid method is supplied with a reasonably good
approximation set to the Pareto front, the gradient part of the method outperforms
the pure SMS-EMOA.

Studies on ZDT Test Suite

To compare the hybrid optimizer with or without using the penalty function for
dominated points, experiments on ZDT6 of the ZDT test suite (Zitzler et al.| (2000)),
cf. Sec. are performed. Parameters are chosen as search space dimension
n = 10, population size u = 20, sy, = 0.1, 7 = 0.5, and the reference point
r = (10,10) for the internal hypervolume computation as well as for the external
performance evaluation. The total number of function evaluations in each run was
2000 in order to test the ability to work with a low budget of function evaluations
(contrarily to the 20,000 function evaluations in previous benchmarks, e.g. |Beume
et al.| (2007))*) which is desirable for real-world applications. Five different strategies
were performed, listed with increasing number of function evaluations dedicated to
the SMS-EMOA part: 20, 200, 400, 1000, and 2000, respectively. The remainder
of the 2000 function evaluations was used for the gradient part.

Fig. reveals that it pays off to apply the gradient part of the algorithm as
soon as a rough approximation set has been found. The speed-up occurs especially
at the beginning and thus the hybrid approach is useful in order to obtain very
good results with few function evaluations. Secondly the picture also shows that
giving a penalty to points in the population which are dominated gives far better
approximation sets w.r.t. the hypervolume. |[...] Clearly, the hybrid algorithm
converges in each case to a population with maximal hypervolume. Also the pure
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Fig. 3.22: Progress of the hybrid optimizer on ZDT6, with n = 10, 4 = 20 and 2000 func-
tion evaluations. Different switching points are used, denoted as the number
of function evaluations of the SMS-EMOA and for the gradient. The penalty
function for dominated points is only used in the lower figure.

SMS-EMO eventually catches up with the hybrid algorithm and converges to the
maximum.

Table shows the results of running the hybrid algorithm on the ZDT test suite
(ZDT1-ZDT4, and ZDT6). Due to the good performance, the hybrid optimizer is
applied using the penalty function for dominated points. It is parameterized using
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3.6 Hybrid Hypervolume-Gradient Metaheuristic

Tab. 3.15: Results for different switching time (ST) strategies of the hybrid optimizer on
ZDT functions, given as averaged hypervolume values over 5 repetitions each.

1000 evaluations 2000 evaluations

ZDT | ST min ‘ avg ‘ max min ‘ avg ‘ max

1 20 || 21.88 | 23.28 | 24.20 || 21.88 | 23.90 | 24.51
500 || 21.12 | 23.39 | 24.34 || 23.60 | 24.12 | 24.46
1000 || 17.20 | 20.02 | 21.85 || 24.18 | 24.38 | 24.48
1500 || 17.20 | 20.02 | 21.85 || 24.11 | 24.26 | 24.40
2000 || 17.20 | 20.02 | 21.85 || 23.06 | 23.73 | 24.37
2 20 19.16 | 21.25 | 24.06 || 19.41 | 22.81 | 24.13
500 || 18.13 | 20.58 | 23.10 || 19.70 | 22.11 | 23.96
1000 || 14.66 | 18.10 | 19.87 || 14.66 | 20.65 | 23.69
1500 || 14.66 | 18.10 | 19.87 || 20.00 | 22.15 | 23.64
2000 || 14.66 | 18.10 | 19.87 || 20.00 | 20.82 | 22.21
3 20 || 22.40 | 25.89 | 27.15 || 22.40 | 26.24 | 27.37
500 || 24.46 | 26.16 | 27.22 || 24.54 | 26.65 | 27.49
1000 || 19.14 | 21.62 | 23.35 || 23.80 | 25.97 | 27.40
1500 || 19.14 | 21.62 | 23.35 || 23.56 | 26.10 | 27.33
2000 || 19.14 | 21.62 | 23.35 || 24.72 | 25.78 | 27.26
4 20 0.00 | 0.00 | 0.00 || 0.00 | 0.00 | 0.00
500 1.99 | 8.74 ] 12.30 1.99 | 10.07 | 17.98
1000 || 6.07 | 10.53 | 14.04 || 10.53 | 13.01 | 16.24
1500 || 6.07 | 10.53 | 14.04 || 8.05 | 12.31 | 16.31
2000 || 6.07 | 10.53 | 14.04 || 8.59 | 12.61 | 16.12
6 20 || 57.83 | 70.86 | 78.10 || 60.36 | 73.88 | 83.30
500 || 36.83 | 61.74 | 72.66 || 51.55 | 72.63 | 79.14
1000 || 38.01 | 51.38 | 63.31 || 71.33 | 78.21 | 85.35
1500 || 38.01 | 51.38 | 63.31 || 75.96 | 80.44 | 85.03
2000 || 38.01 | 51.38 | 63.31 || 81.74 | 88.17 | 91.65

five different switching times of 2000 function evaluations in total, listed by the
number of function evaluations for the SMS-EMOA part: 20, 500, 1000, 1500, and
2000. Each version of the hybrid algorithm is repeated five times with different ran-
dom seeds. The performance is evaluated by the hypervolume w.r.t. the reference
point r = (5,5) for ZDT1-4, and r = (10, 10) for ZDT6, and the same reference
point is used for the internal hypervolume calculation. Other parameters are chosen
as n = 10, syin = 0.01, 7 = 0.8. The minimal, average, and maximal hypervolume
values calculated concerning the five repetitions of a strategy, are recorded after
1000 and 2000 evaluations. The results are not tested for statistical significance
due to the low number of runs. The study shall just give rough tendencies. Re-
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garding the averaged values, the hybrid optimizer using 20 or 500 as switching
time outperforms the pure SMS-EMOA (corresponding to the line of ST= 2000)
after 1000 function evaluations on all functions expect ZDT4. These differences
become marginal after 2000 function evaluations, where the pure SMS-EMOA is
occasionally achieves the best results. On ZDT4, it seems that SMS-EMOA with
only 20 evaluations did not run long enough to generate a good starting population,
so that the gradient method was not able to generate any point dominating the
reference point. The more function evaluations are spend for the SMS-EMOA, the
better the results on the multimodal functions ZDT4 and ZDT6. Concluding, we
see that the gradient method may gain a speed-up, especially in the beginning of
the optimization.

3.6.5 Conclusions

The gradient of the hypervolume of a set has been introduced and integrated into
a hybrid metaheuristic. Using the chain rule, the gradient of the hypervolume
can be computed from the gradients of the objective functions. It is important to
distinguish between non-dominated, strictly dominated, and so called edge point,
i.e., dominated points on the boundary of the dominated surface. While for non-
dominated sets differentiability is inherited from the objective functions, in the
presence of edge points one-sided derivatives occur. For strictly dominated points
sub-gradients with value zero occur. They make it impossible to improve these
points by means of gradient methods. This problem can be partly circumvented
by introducing a penalty approach.

A steepest descent method guided by the experimental approximation of the hyper-
volume gradient is presented. Yet, it is not dedicated as a stand-alone optimizer
as it requires a good starting set. So, a high-level relay hybridization with the
SMS-EMOA is developed. The SMS-EMOA generates a rough approximation of
the Pareto front which is then used as the initialization of the gradient optimizer
which fine-tunes the positions of all points at once to a high precision approxima-
tion.

Proof of concept studies confirmed a fast convergence of the gradient method and
demonstrated that the hybrid optimizer outperforms the original SMS-EMOA on
the considered bi-objective functions. A study with a low budget of function eval-
uations revealed that very fast progress is made with sparse resources so that the
hybrid method can especially be recommended for real-world applications where
only few function evaluations are possible.

Moreover, the gradient method resolves the limitations of the SMS-EMOA regard-
ing the selection scheme: Although its steady-state approach is highly effective, it
is shown in Section that the maximal hypervolume value is not always reach-
able by exchanging only one population member. This drawback is overcome by
the gradient method that optimizes all positions of points at once.
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3.6 Hybrid Hypervolume-Gradient Metaheuristic

An open problem is the gradient computation in case of more than two objectives
which has so far only been sketched. Then, studies on higher dimensional problems
are desirable. Besides, the switching time from the EMOA to the gradient is a pa-
rameter of the hybrid optimizer which deserves further investigation. Furthermore
a sophisticated stopping criterion for the local optimizer is of interest.
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4 Summary

This thesis concludes with the achieved core results and open problems. More de-
tailed statements can be found in the respective conclusion sections above. The two
main research topics are properties of the hypervolume calculation and character-
istics of hypervolume-based evolutionary multiobjective optimization algorithms.
Thereby, this thesis takes the challenging perspective of gaining mainly positive
results and constructive solutions in complex scenarios that are relevant for prac-
titioners.

The problem of calculating the hypervolume is known to belong to the complexity
class #P, yet this gives very abstract limits on the runtime of algorithms. We
provide the first concrete lower bound of Q(mlogm) for the hypervolume of m
points in arbitrary dimensions, shown by reduction from a geometric problem. The
lower bound is sharp for the hypervolume in two or three dimensions as known from
matching upper bounds, resulting in the solved problem complexity of ©(m logm)
for the dimension d € {2,3}. For the hypervolume in higher dimensions it is
assumed that the problem complexity is actually higher, yet it is still the best
known lower bound. Classifying the hypervolume as a special case of Klee’s measure
problem (KMP) grounded a new theoretical bases and allowed to transfer the
knowledge from computational geometry. We here describe an adaption of the
complex canonical KMP algorithm to the hypervolume calculation with significant
simplifications while the runtime of O(m¥?logm) is maintained. Further results
built upon this algorithm. Our contributions and further known properties of the
hypervolume are presented in simple and exact notation.

The main open challenges regarding the hypervolume are the further advancement
of approximation algorithms, faster exact algorithms, and dimension-specific results
of the problem complexity.

The presented study on characteristics of hypervolume-based evolutionary multi-
objective optimization algorithms (EMOA) starts with convergence rates on bi-
objective problems. The main tool is to establish algorithmic equivalence be-
tween EMOA and single-objective EA, namely for the SMS-EMOA on arbitrary
bi-objective problems and an EA optimizing the sum of these objectives. These
finding allows to transfer known convergence results from the single-objective EA
to the SMS-EMOA or to analyze the structurally easier single-objective EA in order
to gain new results. Several convergence rates are proved w.r.t. different muta-
tion operators. The linear convergence rate proved for the SMS-EMOA is the first
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known one for an EMOA without explicit weighting. The new proof techniques
establish a solid framework for the development of further results.

Complementary to the speed of approaching the Pareto front discussed above, we
separately considered the optimization process when the population is positioned on
a continuous Pareto front. It is shown that the steady-state selection of exchanging
one individual per generation may end in a local optimum of the hypervolume w.r. t.
to a fixed reference point, where from the maximal value is unreachable. This local
optimum may be a strong attractor also drawing in optimizers using other selection
schemes. Experimental analyses on popular test problems with connected Pareto
fronts showed that the optimal hypervolume is always reached by population-based
versions of the SMS-EMOA. The hypervolume of linear Pareto fronts only has
a global optimum that is therefore always achievable by steady-state selection.
More analyses on the probabilistic solvability, i.e., the probability of reaching the
global optimum, of other function classes are desired to explore the limits of this
effective selection scheme. Note that the population does not get stuck when the
hypervolume is calculated w.r.t. the adaptive reference point which supports this
concept.

In the study on established test problems with many objectives, SMS-EMOA out-
performs all other considered EMOA, emphasizing that the hypervolume is an
expressive quality measure and suitable selection criterion also in high dimensional
objective spaces. Besides, the eeMOEA, MSOPS with a new weight vector gen-
eration method, and IBEA .+ perform well. The older algorithms NSGA-IT and
SPEA2 completely fail to approach the Pareto front and even diverge. Exemplar-
ily for NSGA-II it is demonstrated that the divergence can be avoided by rejecting
boundary solutions instead of favoring them, which we consider as a general guide-
line for EMOA on many-objective problems.

A parameter tuning study reveals that the SMS-EMOA’s performance can be im-
proved a lot by adapting its parameters to the application problem. Contrarily to
benchmarks in the literature, the choice of the variation operator plays a minor
role, but the tuning causes the main improvements, resulting in more or less equal
performance of the considered variation operators, while the tuned parameter val-
ues are quite different. We postulate that parameter tuning shall become standard
in both real-world applications and academic benchmarks. We strongly put into
question the common practice to tune an optimizer on test problems and to apply
it with these tuned parameters to a real-world problem, due to the experiences
that the optimal parameterizations differ significantly depending on the problem.
Instead, it is recommended to perform the parameter tuning on a metamodel de-
veloped from the expensive application problem, which shall result in performance
improvements compared to default parameterizations.

A gradient of the hypervolume regarding a population of points has been defined
and calculated in order to allude to optimal positions of the points maximizing the
hypervolume. Based on this technique, an optimizer is specified. The SMS-EMOA
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is hybridized with this gradient approach by first executing the SMS-EMOA and
then the gradient optimizer in relay. This way, the SMS-EMOA roughly approaches
the Pareto front and the gradient technique performs a high precision approxima-
tion of the Pareto front. First studies on bi-objective problems give promising
results. The method can especially be recommended in case of a low budget of
function evaluations. The concept as yet needs to be worked out for more than two
objectives.

Only continuous problems have been considered here but the algorithms—hyper-
volume algorithms as well as EMOA-—are also applicable to discrete spaces.

In addition to proceeding the research above on hypervolume-based methods, mul-
tiobjective optimization faces the following major challenges.

The MO-CMA-ES provides a solid variation concept, but dedicated variation op-
erators for the multiobjective case are to date still missing. It shall be promising to
consider the relation of parents in the search space and objective space to estimate
whether the resulting offspring are supposed to be dominated or not. Moreover,
further methods for step size adaptation are of interest.

The integration of preferences deserves further effort in order to flexibly incorporate
the user in the optimization process. To this end, EMOA can be hybridized with
various techniques from multi-criteria decision making (MCDM).

Theoretical analyses of EMOA lack behind the knowledge on single-objective EA
due to the more complex processes. It seems to be promising to transfer tools
and insights from the single-objective case to the multiobjective optimization to
overcome this gap. Some achievements have been accomplished, including our tools
for convergence analyses, yet more are desirable.

The parameterized complexity seems to bear good respects for a different perspec-
tive of theoretical analyses. Traditionally, the runtime of EA is formulated w.r.t.
the dimension of the search space. In many real-world problems, this input size is
fixed and the user is interested in how the runtime of optimizers scales regarding
other parameters. Some work has been done in this field but more is worthwhile.
Real-world problems in both single- or multiobjective optimization may be too
demanding for exact evaluations of each candidate solution. The research field of
metamodelling is a key to handle these problems and deserves further attention.

Hypervolume-based EMOA are currently the favored multiobjective optimizers.
The question arises whether this is the end of the road or other concepts may fulfill
the practitioner’s needs even better.
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Nomenclature

Notation
M (]Rd)

A%

"o

{{a®, ... al

(%

set

set of all multisets with elements from R?
bold, roman letter denotes a point or column vector

column vector transposed to row vector

superscript denotes that v is the ith component within a sorting

™11 double curly brackets denote multiset

subscript denotes the ith component of vector v

transformation from multiset to set by removing copies

Multiobjective Optimization

alb
a<b
a<b
a<<b

nad (M)

ndms(M)

nds(M)

a and b are incomparable

a dominates b

a weakly dominates b

a strongly dominates b

nadir point of multiset M

dimension of objective space of multiobjective problem
dimension of search space of multiobjective problem
non-dominated multiset of multiset M

non-dominated set of multiset M
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4 Summary

Quality Assessment

r reference point bounding the hypervolume H (M, r)
H(y,M,r) hypervolume contribution of v € M to the hypervolume of M
H(M,r) hypervolume of multiset M bounded by reference point r

Leb Lebesgue measure

Parameters of Evolutionary Algorithms

Ne distribution index of simulated binary crossover (SBX)
N distribution index of polynomial mutation (PM)

A offpring population size

1 population size

CR crossover rate of DE

F scaling parameter of DE

N normal distribution

n number of decision variables, size of search space

p® population in generation ¢

Pe application probability of crossover operator

D application probability of mutation operator

U uniform distribution

Abbreviations

DE Differential Evolution

DTLZ Test problems by Deb, Thiele, Laumanns, and Zitzler
EA Evolutionary Algorithm

EMOA Evolutionary Multiobjective Optimization Algorithm, MOEA
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Nomenclature

KMP Klee’s Measure Problem

MOEA Multi-Objective Evolutionary Optimization Algorithm, EMOA
PM Polynomial Mutation

SBX Simulated Binary Crossover

SMS-EMOA  S-metric Selection EMOA
UG Uniform Gap

ZDT Test problems by Zitzler, Deb, and Thiele
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