5,371 research outputs found

    Time is of the Essence: Machine Learning-based Intrusion Detection in Industrial Time Series Data

    Full text link
    The Industrial Internet of Things drastically increases connectivity of devices in industrial applications. In addition to the benefits in efficiency, scalability and ease of use, this creates novel attack surfaces. Historically, industrial networks and protocols do not contain means of security, such as authentication and encryption, that are made necessary by this development. Thus, industrial IT-security is needed. In this work, emulated industrial network data is transformed into a time series and analysed with three different algorithms. The data contains labeled attacks, so the performance can be evaluated. Matrix Profiles perform well with almost no parameterisation needed. Seasonal Autoregressive Integrated Moving Average performs well in the presence of noise, requiring parameterisation effort. Long Short Term Memory-based neural networks perform mediocre while requiring a high training- and parameterisation effort.Comment: Extended version of a publication in the 2018 IEEE International Conference on Data Mining Workshops (ICDMW

    ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    Get PDF
    This paper aims to validate the capability of renewable generation (ReGen) plants to provide online voltage control coordination ancillary service to the system operators in smart grids. Simulation studies about online coordination concepts from ReGen plants have already been identified in previous publications. However, here, the results are validated through a real-time Hardware-In-the-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders, i.e., wind turbine and photo-voltaic system manufacturers and system operators, regarding the existing boundaries for current technologies and requirements for accommodating the new ancillary services in industrial application

    Implementation of conductivity sensors in the Murdoch University pilot plant

    Get PDF
    The strength of the Instrumentation and Control Major at Murdoch University relies heavily on the operation and capability of the Pilot Plant. This facility exposes students to real-world systems and provides an opportunity to apply theoretical knowledge to common industrial equipment. As such, it is continuously desired to increase the capabilities, and optimise the performance of the pilot plant to provide students and staff with a facility that can be used to deliver the best possible introduction to the process control industry. This project builds on knowledge acquired from the Industrial Computer Systems and Instrumentation and Control majors at Murdoch University and uses skills and knowledge developed from both disciplines to deliver a final operational product. Modbus TCP conductivity sensors were installed on each tank of the continuously stirred tank reactor (CSTR) system, and a previously unused tank was used to introduce an electrolyte solution to the system. This increases complexity by providing additional process variables that can be measured in each tank, and controlled by making using of the dye tank pump and recycle stream. This document is created with future students in mind, and as such it is recommended to use this document as a first point before considering conductivity experiments. Instrumentation and software used is introduced and followed by an explanation of the Modbus protocol and how this communicates with the Experion system. The report then explores the implementation of these sensors and the thorough testing that preceded to ensure successful operation. Many issues were found, and limitations of the system will be discussed. As well as this, the development of conductivity control strategies utilising the dye tank pump and recycle stream were created to analyse the performance of the new equipment, and its viability for use in future coursework

    LCCC Workshop on Process Control

    Get PDF

    Activity Report: Automatic Control 2013

    Get PDF

    Wireless distributed intelligence in personal applications

    Get PDF
    Tietokoneet ovat historian kuluessa kehittyneet keskustietokoneista hajautettujen, langattomasti toimivien järjestelmien suuntaan. Elektroniikalla toteutetut automaattiset toiminnot ympärillämme lisääntyvät kiihtyvällä vauhdilla. Tällaiset sovellukset lisääntyvät tulevaisuudessa, mutta siihen soveltuva tekniikka on vielä kehityksen alla ja vaadittavia ominaisuuksia ei aina löydy. Nykyiset lyhyen kantaman langattoman tekniikan standardit ovat tarkoitettu lähinnä teollisuuden ja multimedian käyttöön, siksi ne ovat vain osittain soveltuvia uudenlaisiin ympäristöälykkäisiin käyttötarkoituksiin. Ympäristöälykkäät sovellukset palvelevat enimmäkseen jokapäiväistä elämäämme, kuten turvallisuutta, kulunvalvontaa ja elämyspalveluita. Ympäristöälykkäitä ratkaisuja tarvitaan myös hajautetussa automaatiossa ja kohteiden automaattisessa seurannassa. Tutkimuksen aikana Seinäjoen ammattikorkeakoulussa on tutkittu lyhyen kantaman langatonta tekniikkaa: suunniteltu ja kehitetty pienivirtaisia radionappeja, niitten ohjelmointiympäristöä sekä langattoman verkon synkronointia, tiedonkeruuta ja reititystä. Lisäksi on simuloitu eri reititystapoja, sisäpaikannusta ja kaivinkoneen kalibrointia soveltaen mm. neurolaskentaa. Tekniikkaa on testattu myös käytännön sovelluksissa. Ympäristöälykkäät sovellusalueet ovat ehkä nopeimmin kasvava lähitulevaisuuden ala tietotekniikassa. Tutkitulla tekniikalla on runsaasti uusia haasteita ihmisten hyvinvointia, terveyttä ja turvallisuutta lisäävissä sovelluksissa, kuten myös teollisuuden uusissa sovelluksissa, esimerkiksi älykkäässä energiansiirtoverkossa.The development of computing is moving from mainframe computers to distributed intelligence with wireless features. The automated functions around us, in the form of small electronic devices, are increasing and the pace is continuously accelerating. The number of these applications will increase in the future, but suitable features needed are lacking and suitable technology development is still ongoing. The existing wireless short-range standards are mostly suitable for use in industry and in multimedia applications, but they are only partly suitable for the new network feature demands of the ambient intelligence applications. The ambient intelligent applications will serve us in our daily lives: security, access control and exercise services. Ambient intelligence is also adopted by industry in distributed amorphous automation, in access monitoring and the control of machines and devices. During this research, at Seinäjoki University of Applied Sciences, we have researched, designed and developed short-range wireless technology: low-power radio buttons with a programming environment for them as well as synchronization, data collecting and routing features for the wireless network. We have simulated different routing methods, indoor positioning and excavator calibration using for example neurocomputing. In addition, we have tested the technology in practical applications. The ambient intelligent applications are perhaps the area growing the most in information technology in the future. There will be many new challenges to face to increase welfare, health, security, as well as industrial applications (for example, at factories and in smart grids) in the future.fi=vertaisarvioitu|en=peerReviewed
    corecore