4,498 research outputs found

    On the Effect of Inter-observer Variability for a Reliable Estimation of Uncertainty of Medical Image Segmentation

    Full text link
    Uncertainty estimation methods are expected to improve the understanding and quality of computer-assisted methods used in medical applications (e.g., neurosurgical interventions, radiotherapy planning), where automated medical image segmentation is crucial. In supervised machine learning, a common practice to generate ground truth label data is to merge observer annotations. However, as many medical image tasks show a high inter-observer variability resulting from factors such as image quality, different levels of user expertise and domain knowledge, little is known as to how inter-observer variability and commonly used fusion methods affect the estimation of uncertainty of automated image segmentation. In this paper we analyze the effect of common image label fusion techniques on uncertainty estimation, and propose to learn the uncertainty among observers. The results highlight the negative effect of fusion methods applied in deep learning, to obtain reliable estimates of segmentation uncertainty. Additionally, we show that the learned observers' uncertainty can be combined with current standard Monte Carlo dropout Bayesian neural networks to characterize uncertainty of model's parameters.Comment: Appears in Medical Image Computing and Computer Assisted Interventions (MICCAI), 201

    Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation.

    Get PDF
    PurposeWith the advent of MR guided radiotherapy, internal organ motion can be imaged simultaneously during treatment. In this study, we evaluate the feasibility of pancreas MRI segmentation using state-of-the-art segmentation methods.Methods and materialT2 weighted HASTE and T1 weighted VIBE images were acquired on 3 patients and 2 healthy volunteers for a total of 12 imaging volumes. A novel dictionary learning (DL) method was used to segment the pancreas and compared to t mean-shift merging (MSM), distance regularized level set (DRLS), graph cuts (GC) and the segmentation results were compared to manual contours using Dice's index (DI), Hausdorff distance and shift of the-center-of-the-organ (SHIFT).ResultsAll VIBE images were successfully segmented by at least one of the auto-segmentation method with DI >0.83 and SHIFT ≤2 mm using the best automated segmentation method. The automated segmentation error of HASTE images was significantly greater. DL is statistically superior to the other methods in Dice's overlapping index. For the Hausdorff distance and SHIFT measurement, DRLS and DL performed slightly superior to the GC method, and substantially superior to MSM. DL required least human supervision and was faster to compute.ConclusionOur study demonstrated potential feasibility of automated segmentation of the pancreas on MRI images with minimal human supervision at the beginning of imaging acquisition. The achieved accuracy is promising for organ localization
    • …
    corecore