2,262 research outputs found

    Tuberculosis Prediction by Machine Learning Techniques

    Get PDF
    Tuberculosis is one of the top reasons of death all over the planet. Mycobacterium tuberculosis, bacteria that infects the lungs, is what causes it. For professionals working in the medical field, accurately identifying and timely predicting tuberculosis are major challenges. The course of treatment also varies from patient to patient since occasionally a patient develops drug resistance. Doctors will be given algorithmic support while using machine learning to help them diagnose, treat patients appropriately, and make quicker and better judgments. This paper discusses the many tuberculosis causes and symptoms as well as how accurate and fast prediction and diagnostic investigations have been carried out in recent years with the aid of machine learning (ML) technique

    Tuberculosis Disease Detection through CXR Images based on Deep Neural Network Approach

    Get PDF
    Tuberculosis (TB) is a disease that, if left untreated for an extended period of time, can ultimately be fatal. Early TB detection can be aided by using a deep learning ensemble. In previous work, ensemble classifiers were only trained on images that shared similar characteristics. It is necessary for an ensemble to produce a diverse set of errors in order for it to be useful; this can be accomplished by making use of a number of different classifiers and/or features. In light of this, a brand-new framework has been constructed in this study for the purpose of segmenting and identifying TB in human Chest X-ray. It was determined that searching traditional web databases for chest X-ray was necessary. At this point, we pass the photos that we have collected over to Swin ResUnet3 so that they may be segmented. After the segmented chest X-ray have been provided to it, the Multi-scale Attention-based Densenet with Extreme Learning Machine (MAD-ELM) model will be applied in the detection stage in order to effectively diagnose tuberculosis from human chest X-ray. This will be done in order to maximize efficiency. Because it increased the variety of errors made by the basic classifiers, the supplied variation of the approach that was proposed was able to detect tuberculosis more effectively. The proposed ensemble method produced results with an accuracy of 94.2 percent, which are comparable to those obtained by past efforts

    A Convolutional Neural Network for the Automatic Diagnosis of Collagen VI related Muscular Dystrophies

    Full text link
    The development of machine learning systems for the diagnosis of rare diseases is challenging mainly due the lack of data to study them. Despite this challenge, this paper proposes a system for the Computer Aided Diagnosis (CAD) of low-prevalence, congenital muscular dystrophies from confocal microscopy images. The proposed CAD system relies on a Convolutional Neural Network (CNN) which performs an independent classification for non-overlapping patches tiling the input image, and generates an overall decision summarizing the individual decisions for the patches on the query image. This decision scheme points to the possibly problematic areas in the input images and provides a global quantitative evaluation of the state of the patients, which is fundamental for diagnosis and to monitor the efficiency of therapies.Comment: Submitted for review to Expert Systems With Application

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed

    Diagnosis of Smear-Negative Pulmonary Tuberculosis using Ensemble Method: A Preliminary Research

    Get PDF
    Indonesia is one of 22 countries with the highest burden of Tuberculosis in the world. According to WHO’s 2015 report, Indonesia was estimated to have one million new tuberculosis (TB) cases per year. Unfortunately, only one-third of new TB cases are detected. Diagnosis of TB is difficult, especially in the case of smear-negative pulmonary tuberculosis (SNPT). The SNPT is diagnosed by TB trained doctors based on physical and laboratory examinations. This study is preliminary research that aims to determine the ensemble method with the highest level of accuracy in the diagnosis model of SNPT. This model is expected to be a reference in the development of the diagnosis of new pulmonary tuberculosis cases using input in the form of symptoms and physical examination in accordance with the guidelines for tuberculosis management in Indonesia. The proposed SNPT diagnosis model can be used as a cost-effective tool in conditions of limited resources. Data were obtained from medical records of tuberculosis patients from the Jakarta Respiratory Center. The results show that the Random Forest has the best accuracy, which is 90.59%, then Adaboost of 90.54% and Bagging of 86.91%

    Machine learning and applications in microbiology

    Full text link
    To understand the intricacies of microorganisms at the molecular level requires making sense of copious volumes of data such that it may now be humanly impossible to detect insightful data patterns without an artificial intelligence application called machine learning. Applying machine learning to address biological problems is expected to grow at an unprecedented rate, yet it is perceived by the uninitiated as a mysterious and daunting entity entrusted to the domain of mathematicians and computer scientists. The aim of this review is to identify key points required to start the journey of becoming an effective machine learning practitioner. These key points are further reinforced with an evaluation of how machine learning has been applied so far in a broad scope of real-life microbiology examples. This includes predicting drug targets or vaccine candidates, diagnosing microorganisms causing infectious diseases, classifying drug resistance against antimicrobial medicines, predicting disease outbreaks and exploring microbial interactions. Our hope is to inspire microbiologists and other related researchers to join the emerging machine learning revolution
    • …
    corecore