33 research outputs found

    Truthful Assignment without Money

    Full text link
    We study the design of truthful mechanisms that do not use payments for the generalized assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite graph with jobs on one side and machines on the other. Machines have capacities and edges have values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model of private valuations, motivated by impossibility results, the value and sizes on all job-machine pairs are public information; however, whether an edge exists or not in the bipartite graph is a job's private information. We study several variants of the GAP starting with matching. For the unweighted version, we give an optimal strategyproof mechanism; for maximum weight bipartite matching, however, we show give a 2-approximate strategyproof mechanism and show by a matching lowerbound that this is optimal. Next we study knapsack-like problems, which are APX-hard. For these problems, we develop a general LP-based technique that extends the ideas of Lavi and Swamy to reduce designing a truthful mechanism without money to designing such a mechanism for the fractional version of the problem, at a loss of a factor equal to the integrality gap in the approximation ratio. We use this technique to obtain strategyproof mechanisms with constant approximation ratios for these problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by reducing, with logarithmic loss in the approximation, to our solution for the value-invariant GAP. Our technique may be of independent interest for designing truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic Commerce (EC), 201

    Fast Convex Decomposition for Truthful Social Welfare Approximation

    Full text link
    Approximating the optimal social welfare while preserving truthfulness is a well studied problem in algorithmic mechanism design. Assuming that the social welfare of a given mechanism design problem can be optimized by an integer program whose integrality gap is at most α\alpha, Lavi and Swamy~\cite{Lavi11} propose a general approach to designing a randomized α\alpha-approximation mechanism which is truthful in expectation. Their method is based on decomposing an optimal solution for the relaxed linear program into a convex combination of integer solutions. Unfortunately, Lavi and Swamy's decomposition technique relies heavily on the ellipsoid method, which is notorious for its poor practical performance. To overcome this problem, we present an alternative decomposition technique which yields an α(1+ϔ)\alpha(1 + \epsilon) approximation and only requires a quadratic number of calls to an integrality gap verifier

    Efficiency of Truthful and Symmetric Mechanisms in One-sided Matching

    Full text link
    We study the efficiency (in terms of social welfare) of truthful and symmetric mechanisms in one-sided matching problems with {\em dichotomous preferences} and {\em normalized von Neumann-Morgenstern preferences}. We are particularly interested in the well-known {\em Random Serial Dictatorship} mechanism. For dichotomous preferences, we first show that truthful, symmetric and optimal mechanisms exist if intractable mechanisms are allowed. We then provide a connection to online bipartite matching. Using this connection, it is possible to design truthful, symmetric and tractable mechanisms that extract 0.69 of the maximum social welfare, which works under assumption that agents are not adversarial. Without this assumption, we show that Random Serial Dictatorship always returns an assignment in which the expected social welfare is at least a third of the maximum social welfare. For normalized von Neumann-Morgenstern preferences, we show that Random Serial Dictatorship always returns an assignment in which the expected social welfare is at least \frac{1}{e}\frac{\nu(\opt)^2}{n}, where \nu(\opt) is the maximum social welfare and nn is the number of both agents and items. On the hardness side, we show that no truthful mechanism can achieve a social welfare better than \frac{\nu(\opt)^2}{n}.Comment: 13 pages, 1 figur

    Mechanism Design via Dantzig-Wolfe Decomposition

    Full text link
    In random allocation rules, typically first an optimal fractional point is calculated via solving a linear program. The calculated point represents a fractional assignment of objects or more generally packages of objects to agents. In order to implement an expected assignment, the mechanism designer must decompose the fractional point into integer solutions, each satisfying underlying constraints. The resulting convex combination can then be viewed as a probability distribution over feasible assignments out of which a random assignment can be sampled. This approach has been successfully employed in combinatorial optimization as well as mechanism design with or without money. In this paper, we show that both finding the optimal fractional point as well as its decomposition into integer solutions can be done at once. We propose an appropriate linear program which provides the desired solution. We show that the linear program can be solved via Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition is a direct implementation of the revised simplex method which is well known to be highly efficient in practice. We also show how to use the Benders decomposition as an alternative method to solve the problem. The proposed method can also find a decomposition into integer solutions when the fractional point is readily present perhaps as an outcome of other algorithms rather than linear programming. The resulting convex decomposition in this case is tight in terms of the number of integer points according to the Carath{\'e}odory's theorem

    Social welfare in one-sided matchings: Random priority and beyond

    Full text link
    We study the problem of approximate social welfare maximization (without money) in one-sided matching problems when agents have unrestricted cardinal preferences over a finite set of items. Random priority is a very well-known truthful-in-expectation mechanism for the problem. We prove that the approximation ratio of random priority is Theta(n^{-1/2}) while no truthful-in-expectation mechanism can achieve an approximation ratio better than O(n^{-1/2}), where n is the number of agents and items. Furthermore, we prove that the approximation ratio of all ordinal (not necessarily truthful-in-expectation) mechanisms is upper bounded by O(n^{-1/2}), indicating that random priority is asymptotically the best truthful-in-expectation mechanism and the best ordinal mechanism for the problem.Comment: 13 page

    Strategyproof Mechanisms for Additively Separable Hedonic Games and Fractional Hedonic Games

    Full text link
    Additively separable hedonic games and fractional hedonic games have received considerable attention. They are coalition forming games of selfish agents based on their mutual preferences. Most of the work in the literature characterizes the existence and structure of stable outcomes (i.e., partitions in coalitions), assuming that preferences are given. However, there is little discussion on this assumption. In fact, agents receive different utilities if they belong to different partitions, and thus it is natural for them to declare their preferences strategically in order to maximize their benefit. In this paper we consider strategyproof mechanisms for additively separable hedonic games and fractional hedonic games, that is, partitioning methods without payments such that utility maximizing agents have no incentive to lie about their true preferences. We focus on social welfare maximization and provide several lower and upper bounds on the performance achievable by strategyproof mechanisms for general and specific additive functions. In most of the cases we provide tight or asymptotically tight results. All our mechanisms are simple and can be computed in polynomial time. Moreover, all the lower bounds are unconditional, that is, they do not rely on any computational or complexity assumptions

    Selfish Knapsack

    Full text link
    We consider a selfish variant of the knapsack problem. In our version, the items are owned by agents, and each agent can misrepresent the set of items she owns---either by avoiding reporting some of them (understating), or by reporting additional ones that do not exist (overstating). Each agent's objective is to maximize, within the items chosen for inclusion in the knapsack, the total valuation of her own chosen items. The knapsack problem, in this context, seeks to minimize the worst-case approximation ratio for social welfare at equilibrium. We show that a randomized greedy mechanism has attractive strategic properties: in general, it has a correlated price of anarchy of 22 (subject to a mild assumption). For overstating-only agents, it becomes strategyproof; we also provide a matching lower bound of 22 on the (worst-case) approximation ratio attainable by randomized strategyproof mechanisms, and show that no deterministic strategyproof mechanism can provide any constant approximation ratio. We also deal with more specialized environments. For the case of 22 understating-only agents, we provide a randomized strategyproof 5+427≈1.522\frac{5+4\sqrt{2}}{7} \approx 1.522-approximate mechanism, and a lower bound of 55−92≈1.09\frac{5\sqrt{5}-9}{2} \approx 1.09. When all agents but one are honest, we provide a deterministic strategyproof 1+52≈1.618\frac{1+\sqrt{5}}{2} \approx 1.618-approximate mechanism with a matching lower bound. Finally, we consider a model where agents can misreport their items' properties rather than existence. Specifically, each agent owns a single item, whose value-to-size ratio is publicly known, but whose actual value and size are not. We show that an adaptation of the greedy mechanism is strategyproof and 22-approximate, and provide a matching lower bound; we also show that no deterministic strategyproof mechanism can provide a constant approximation ratio
    corecore