2,077 research outputs found

    Efficient data uncertainty management for health industrial internet of things using machine learning

    Full text link
    [EN] In modern technologies, the industrial internet of things (IIoT) has gained rapid growth in the fields of medical, transportation, and engineering. It consists of a self-governing configuration and cooperated with sensors to collect, process, and analyze the processes of a real-time system. In the medical system, healthcare IIoT (HIIoT) provides analytics of a huge amount of data and offers low-cost storage systems with the collaboration of cloud systems for the monitoring of patient information. However, it faces certain connectivity, nodes failure, and rapid data delivery challenges in the development of e-health systems. Therefore, to address such concerns, this paper presents an efficient data uncertainty management model for HIIoT using machine learning (EDM-ML) with declining nodes prone and data irregularity. Its aim is to increase the efficacy for the collection and processing of real-time data along with smart functionality against anonymous nodes. It developed an algorithm for improving the health services against disruption of network status and overheads. Also, the multi-objective function decreases the uncertainty in the management of medical data. Furthermore, it expects the routing decisions using a machine learning-based algorithm and increases the uniformity in health operations by balancing the network resources and trust distribution. Finally, it deals with a security algorithm and established control methods to protect the distributed data in the exposed health industry. Extensive simulations are performed, and their results reveal the significant performance of the proposed model in the context of uncertainty and intelligence than benchmark algorithms.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh Saudi Arabia. Authors are thankful for the support.Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, I.; Lloret, J. (2021). Efficient data uncertainty management for health industrial internet of things using machine learning. International Journal of Communication Systems. 34(16):1-14. https://doi.org/10.1002/dac.4948114341

    Protection of big data privacy

    Full text link
    In recent years, big data have become a hot research topic. The increasing amount of big data also increases the chance of breaching the privacy of individuals. Since big data require high computational power and large storage, distributed systems are used. As multiple parties are involved in these systems, the risk of privacy violation is increased. There have been a number of privacy-preserving mechanisms developed for privacy protection at different stages (e.g., data generation, data storage, and data processing) of a big data life cycle. The goal of this paper is to provide a comprehensive overview of the privacy preservation mechanisms in big data and present the challenges for existing mechanisms. In particular, in this paper, we illustrate the infrastructure of big data and the state-of-the-art privacy-preserving mechanisms in each stage of the big data life cycle. Furthermore, we discuss the challenges and future research directions related to privacy preservation in big data

    Decentralized workflow management on software defined infrastructures

    Get PDF

    A Review on Cloud Data Security Challenges and existing Countermeasures in Cloud Computing

    Get PDF
    Cloud computing (CC) is among the most rapidly evolving computer technologies. That is the required accessibility of network assets, mainly information storage with processing authority without the requirement for particular and direct user administration. CC is a collection of public and private data centers that provide a single platform for clients throughout the Internet. The growing volume of personal and sensitive information acquired through supervisory authorities demands the usage of the cloud not just for information storage and for data processing at cloud assets. Nevertheless, due to safety issues raised by recent data leaks, it is recommended that unprotected sensitive data not be sent to public clouds. This document provides a detailed appraisal of the research regarding data protection and privacy problems, data encrypting, and data obfuscation, including remedies for cloud data storage. The most up-to-date technologies and approaches for cloud data security are examined. This research also examines several current strategies for addressing cloud security concerns. The performance of each approach is then compared based on its characteristics, benefits, and shortcomings. Finally, go at a few active cloud storage data security study fields

    Security Enhancement in Surveillance Cloud Using Machine Learning Techniques

    Get PDF
    Most industries are now switching from traditional modes to cloud environments and cloud-based services. It is essential to create a secure environment for the cloud space in order to provide consumers with a safe and protected environment for cloud-based transactions. Here, we discuss the suggested approaches for creating a reliable and safe environment for a surveillance cloud. When assessing the security of vital locations, surveillance data is crucial. We are implementing machine learning methods to improve cloud security to more precisely classify image pixels, we make use of Support Vector Machines (SVM) and Fuzzy C-means Clustering (FCM). We also extend the conventional two-tiered design by adding a third level, the CloudSec module, to lower the risk of potential disclosure of surveillance data.In our work we  evaluates how well our proposed model (FCM-SVM) performed against contemporary models like ANN, KNN, SVD, and Naive Bayes. Comparing our model to other cutting-edge models, we found that it performed better, with an average accuracy of 94.4%

    Twenty security considerations for cloud-supported Internet of Things

    Get PDF
    To realise the broad vision of pervasive computing, underpinned by the “Internet of Things” (IoT), it is essential to break down application and technology-based silos and support broad connectivity and data sharing; the cloud being a natural enabler. Work in IoT tends towards the subsystem, often focusing on particular technical concerns or application domains, before offloading data to the cloud. As such, there has been little regard given to the security, privacy and personal safety risks that arise beyond these subsystems; that is, from the wide-scale, crossplatform openness that cloud services bring to IoT. In this paper we focus on security considerations for IoT from the perspectives of cloud tenants, end-users and cloud providers, in the context of wide-scale IoT proliferation, working across the range of IoT technologies (be they things or entire IoT subsystems). Our contribution is to analyse the current state of cloud-supported IoT to make explicit the security considerations that require further work.This work was supported by UK Engineering and Physical Sciences Research Council grant EP/K011510 CloudSafetyNet: End-to-End Application Security in the Cloud and Microsoft through the Microsoft Cloud Computing Research Centre

    Secure and Trustworthy Artificial Intelligence-Extended Reality (AI-XR) for Metaverses

    Full text link
    Metaverse is expected to emerge as a new paradigm for the next-generation Internet, providing fully immersive and personalised experiences to socialize, work, and play in self-sustaining and hyper-spatio-temporal virtual world(s). The advancements in different technologies like augmented reality, virtual reality, extended reality (XR), artificial intelligence (AI), and 5G/6G communication will be the key enablers behind the realization of AI-XR metaverse applications. While AI itself has many potential applications in the aforementioned technologies (e.g., avatar generation, network optimization, etc.), ensuring the security of AI in critical applications like AI-XR metaverse applications is profoundly crucial to avoid undesirable actions that could undermine users' privacy and safety, consequently putting their lives in danger. To this end, we attempt to analyze the security, privacy, and trustworthiness aspects associated with the use of various AI techniques in AI-XR metaverse applications. Specifically, we discuss numerous such challenges and present a taxonomy of potential solutions that could be leveraged to develop secure, private, robust, and trustworthy AI-XR applications. To highlight the real implications of AI-associated adversarial threats, we designed a metaverse-specific case study and analyzed it through the adversarial lens. Finally, we elaborate upon various open issues that require further research interest from the community.Comment: 24 pages, 11 figure
    • …
    corecore