1,278 research outputs found

    IDMoB: IoT Data Marketplace on Blockchain

    Full text link
    Today, Internet of Things (IoT) devices are the powerhouse of data generation with their ever-increasing numbers and widespread penetration. Similarly, artificial intelligence (AI) and machine learning (ML) solutions are getting integrated to all kinds of services, making products significantly more "smarter". The centerpiece of these technologies is "data". IoT device vendors should be able keep up with the increased throughput and come up with new business models. On the other hand, AI/ML solutions will produce better results if training data is diverse and plentiful. In this paper, we propose a blockchain-based, decentralized and trustless data marketplace where IoT device vendors and AI/ML solution providers may interact and collaborate. By facilitating a transparent data exchange platform, access to consented data will be democratized and the variety of services targeting end-users will increase. Proposed data marketplace is implemented as a smart contract on Ethereum blockchain and Swarm is used as the distributed storage platform.Comment: Presented at Crypto Valley Conference on Blockchain Technology (CVCBT 2018), 20-22 June 2018 - published version may diffe

    Building the Infrastructure for Cloud Security

    Get PDF
    Computer scienc

    Advancing security information and event management frameworks in managed enterprises using geolocation

    Get PDF
    Includes bibliographical referencesSecurity Information and Event Management (SIEM) technology supports security threat detection and response through real-time and historical analysis of security events from a range of data sources. Through the retrieval of mass feedback from many components and security systems within a computing environment, SIEMs are able to correlate and analyse events with a view to incident detection. The hypothesis of this study is that existing Security Information and Event Management techniques and solutions can be complemented by location-based information provided by feeder systems. In addition, and associated with the introduction of location information, it is hypothesised that privacy-enforcing procedures on geolocation data in SIEMs and meta- systems alike are necessary and enforceable. The method for the study was to augment a SIEM, established for the collection of events in an enterprise service management environment, with geo-location data. Through introducing the location dimension, it was possible to expand the correlation rules of the SIEM with location attributes and to see how this improved security confidence. An important co-consideration is the effect on privacy, where location information of an individual or system is propagated to a SIEM. With a theoretical consideration of the current privacy directives and regulations (specifically as promulgated in the European Union), privacy supporting techniques are introduced to diminish the accuracy of the location information - while still enabling enhanced security analysis. In the context of a European Union FP7 project relating to next generation SIEMs, the results of this work have been implemented based on systems, data, techniques and resilient features of the MASSIF project. In particular, AlienVault has been used as a platform for augmentation of a SIEM and an event set of several million events, collected over a three month period, have formed the basis for the implementation and experimentation. A "brute-force attack" misuse case scenario was selected to highlight the benefits of geolocation information as an enhancement to SIEM detection (and false-positive prevention). With respect to privacy, a privacy model is introduced for SIEM frameworks. This model utilises existing privacy legislation, that is most stringent in terms of privacy, as a basis. An analysis of the implementation and testing is conducted, focusing equally on data security and privacy, that is, assessing location-based information in enhancing SIEM capability in advanced security detection, and, determining if privacy-enforcing procedures on geolocation in SIEMs and other meta-systems are achievable and enforceable. Opportunities for geolocation enhancing various security techniques are considered, specifically for solving misuse cases identified as existing problems in enterprise environments. In summary, the research shows that additional security confidence and insight can be achieved through the augmentation of SIEM event information with geo-location information. Through the use of spatial cloaking it is also possible to incorporate location information without com- promising individual privacy. Overall the research reveals that there are significant benefits for SIEMs to make use of geo-location in their analysis calculations, and that this can be effectively conducted in ways which are acceptable to privacy considerations when considered against prevailing privacy legislation and guidelines

    A Distributed Architecture for the Monitoring of Clouds and CDNs: Applications to Amazon AWS

    Get PDF
    Clouds and CDNs are systems that tend to separate the content being requested by users from the physical servers capable of serving it. From the network point of view, monitoring and optimizing performance for the traffic they generate are challenging tasks, given that the same resource can be located in multiple places, which can, in turn, change at any time. The first step in understanding cloud and CDN systems is thus the engineering of a monitoring platform. In this paper, we propose a novel solution that combines passive and active measurements and whose workflow has been tailored to specifically characterize the traffic generated by cloud and CDN infrastructures. We validate our platform by performing a longitudinal characterization of the very well known cloud and CDN infrastructure provider Amazon Web Services (AWS). By observing the traffic generated by more than 50 000 Internet users of an Italian Internet Service Provider, we explore the EC2, S3, and CloudFront AWS services, unveiling their infrastructure, the pervasiveness of web services they host, and their traffic allocation policies as seen from our vantage points. Most importantly, we observe their evolution over a two-year-long period. The solution provided in this paper can be of interest for the following: 1) developers aiming at building measurement tools for cloud infrastructure providers; 2) developers interested in failure and anomaly detection systems; and 3) third-party service-level agreement certificators who can design systems to independently monitor performance. Finally, we believe that the results about AWS presented in this paper are interes

    A geolocation-aware mobile crowdsourcing solution for the emergency supply of oxygen cylinders

    Get PDF
    © 2020 The Authors. Published by Elsevier B.V.All rights reserved. Emergency medical oxygen cylinders are commonly used as first aid kits to prevent strokes during chronic obstructive pulmonary disease (COPD) / asthma attacks. In this paper, we propose a geolocation-aware mobile crowdsourcing solution for the emergency supply of oxygen cylinders to patients suffering from sudden breathing difficulties. The proposed crowdsourcing solution leverages the proliferation of mobile devices to connect requestors of emergency oxygen cylinders with potential suppliers from the crowd during crises. We describe the design process of the system, its technical implementation details, key features. We also discuss some of the encountered challenges and summarize the actions taken to address them
    • …
    corecore