43,360 research outputs found
Recommended from our members
A Framework for Trusted Services
An existing challenge when selecting services to be used in a service- based system is to be able to distinguish between good and bad services. In this paper we present a trust-based service selection framework. The framework uses a trust model that calculates the level of trust a user may have with a service based on past experience of the user with the service and feedback about the service received from other users. The model takes into account different levels of trust among users, different relationships between users, and different levels of importance that a user may have for certain quality aspects of a service. A prototype tool has been implemented to illustrate and evaluate the work. The trust model has been evaluated in terms of its capacity to adjust itself due to changes in user ratings and its robustness
Event-Based Modeling with High-Dimensional Imaging Biomarkers for Estimating Spatial Progression of Dementia
Event-based models (EBM) are a class of disease progression models that can
be used to estimate temporal ordering of neuropathological changes from
cross-sectional data. Current EBMs only handle scalar biomarkers, such as
regional volumes, as inputs. However, regional aggregates are a crude summary
of the underlying high-resolution images, potentially limiting the accuracy of
EBM. Therefore, we propose a novel method that exploits high-dimensional
voxel-wise imaging biomarkers: n-dimensional discriminative EBM (nDEBM). nDEBM
is based on an insight that mixture modeling, which is a key element of
conventional EBMs, can be replaced by a more scalable semi-supervised support
vector machine (SVM) approach. This SVM is used to estimate the degree of
abnormality of each region which is then used to obtain subject-specific
disease progression patterns. These patterns are in turn used for estimating
the mean ordering by fitting a generalized Mallows model. In order to validate
the biomarker ordering obtained using nDEBM, we also present a framework for
Simulation of Imaging Biomarkers' Temporal Evolution (SImBioTE) that mimics
neurodegeneration in brain regions. SImBioTE trains variational auto-encoders
(VAE) in different brain regions independently to simulate images at varying
stages of disease progression. We also validate nDEBM clinically using data
from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In both
experiments, nDEBM using high-dimensional features gave better performance than
state-of-the-art EBM methods using regional volume biomarkers. This suggests
that nDEBM is a promising approach for disease progression modeling.Comment: IPMI 201
- …