3,219 research outputs found

    A Trust-based Recruitment Framework for Multi-hop Social Participatory Sensing

    Full text link
    The idea of social participatory sensing provides a substrate to benefit from friendship relations in recruiting a critical mass of participants willing to attend in a sensing campaign. However, the selection of suitable participants who are trustable and provide high quality contributions is challenging. In this paper, we propose a recruitment framework for social participatory sensing. Our framework leverages multi-hop friendship relations to identify and select suitable and trustworthy participants among friends or friends of friends, and finds the most trustable paths to them. The framework also includes a suggestion component which provides a cluster of suggested friends along with the path to them, which can be further used for recruitment or friendship establishment. Simulation results demonstrate the efficacy of our proposed recruitment framework in terms of selecting a large number of well-suited participants and providing contributions with high overall trust, in comparison with one-hop recruitment architecture.Comment: accepted in DCOSS 201

    Stronger Baselines for Trustable Results in Neural Machine Translation

    Full text link
    Interest in neural machine translation has grown rapidly as its effectiveness has been demonstrated across language and data scenarios. New research regularly introduces architectural and algorithmic improvements that lead to significant gains over "vanilla" NMT implementations. However, these new techniques are rarely evaluated in the context of previously published techniques, specifically those that are widely used in state-of-theart production and shared-task systems. As a result, it is often difficult to determine whether improvements from research will carry over to systems deployed for real-world use. In this work, we recommend three specific methods that are relatively easy to implement and result in much stronger experimental systems. Beyond reporting significantly higher BLEU scores, we conduct an in-depth analysis of where improvements originate and what inherent weaknesses of basic NMT models are being addressed. We then compare the relative gains afforded by several other techniques proposed in the literature when starting with vanilla systems versus our stronger baselines, showing that experimental conclusions may change depending on the baseline chosen. This indicates that choosing a strong baseline is crucial for reporting reliable experimental results.Comment: To appear at the Workshop on Neural Machine Translation (WNMT

    A FUNCTIONAL SKETCH FOR RESOURCES MANAGEMENT IN COLLABORATIVE SYSTEMS FOR BUSINESS

    Get PDF
    This paper presents a functional design sketch for the resource management module of a highly scalable collaborative system. Small and medium enterprises require such tools in order to benefit from and develop innovative business ideas and technologies. As computing power is a modern increasing demand and no easy and cheap solutions are defined, especially small companies or emerging business projects abide a more accessible alternative. Our work targets to settle a model for how P2P architecture can be used as infrastructure for a collaborative system that delivers resource access services. We are focused on finding a workable collaborative strategy between peers so that the system offers a cheap, trustable and quality service. Thus, in this phase we are not concerned about solutions for a specific type of task to be executed by peers, but only considering CPU power as resource. This work concerns the resource management module as a part of a larger project in which we aim to build a collaborative system for businesses with important resource demandsresource management, p2p, open-systems, service oriented computing, collaborative systems

    Visualizing recommendations to support exploration, transparency and controllability

    Get PDF
    Research on recommender systems has traditionally focused on the development of algorithms to improve accuracy of recommendations. So far, little research has been done to enable user interaction with such systems as a basis to support exploration and control by end users. In this paper, we present our research on the use of information visualization techniques to interact with recommender systems. We investigated how information visualization can improve user understanding of the typically black-box rationale behind recommendations in order to increase their perceived relevance and meaning and to support exploration and user involvement in the recommendation process. Our study has been performed using TalkExplorer, an interactive visualization tool developed for attendees of academic conferences. The results of user studies performed at two conferences allowed us to obtain interesting insights to enhance user interfaces that integrate recommendation technology. More specifically, effectiveness and probability of item selection both increase when users are able to explore and interrelate multiple entities - i.e. items bookmarked by users, recommendations and tags. Copyright © 2013 ACM
    • …
    corecore