3,909 research outputs found

    Unintegrated parton distributions and electroweak boson production at hadron colliders

    Full text link
    We describe the use of doubly-unintegrated parton distributions in hadron-hadron collisions, using the (z,k_t)-factorisation prescription where the transverse momentum of the incoming parton is generated in the last evolution step. We apply this formalism to calculate the transverse momentum (P_T) distributions of produced W and Z bosons and compare the predictions to Tevatron Run 1 data. We find that the observed P_T distributions can be generated almost entirely by the leading order q_1 q_2 -> W,Z subprocesses, using known and universal doubly-unintegrated quark distributions. We also calculate the P_T distribution of the Standard Model Higgs boson at the LHC, where the dominant production mechanism is by gluon-gluon fusion.Comment: 20 pages, 8 figures. Version to appear in Phys. Rev. D; correction to Higgs P_T distribution made in Erratu

    An adjoint for likelihood maximization

    No full text
    The process of likelihood maximization can be found in many different areas of computational modelling. However, the construction of such models via likelihood maximization requires the solution of a difficult multi-modal optimization problem involving an expensive O(n3) factorization. The optimization techniques used to solve this problem may require many such factorizations and can result in a significant bottle-neck. This article derives an adjoint formulation of the likelihood employed in the construction of a kriging model via reverse algorithmic differentiation. This adjoint is found to calculate the likelihood and all of its derivatives more efficiently than the standard analytical method and can therefore be utilised within a simple local search or within a hybrid global optimization to accelerate convergence and therefore reduce the cost of the likelihood optimization

    BLC: Private Matrix Factorization Recommenders via Automatic Group Learning

    Get PDF
    We propose a privacy-enhanced matrix factorization recommender that exploits the fact that users can often be grouped together by interest. This allows a form of “hiding in the crowd” privacy. We introduce a novel matrix factorization approach suited to making recommendations in a shared group (or “nym”) setting and the BLC algorithm for carrying out this matrix factorization in a privacy-enhanced manner. We demonstrate that the increased privacy does not come at the cost of reduced recommendation accuracy

    Deep matrix factorization for trust-aware recommendation in social networks

    Get PDF
    Recent years have witnessed remarkable information overload in online social networks, and social network based approaches for recommender systems have been widely studied. The trust information in social networks among users is an important factor for improving recommendation performance. Many successful recommendation tasks are treated as the matrix factorization problems. However, the prediction performance of matrix factorization based methods largely depends on the matrixes initialization of users and items. To address this challenge, we develop a novel trust-aware approach based on deep learning to alleviate the initialization dependence. First, we propose two deep matrix factorization (DMF) techniques, i.e., linear DMF and non-linear DMF to extract features from the user-item rating matrix for improving the initialization accuracy. The trust relationship is integrated into the DMF model according to the preference similarity and the derivations of users on items. Second, we exploit deep marginalized Denoising Autoencoder (Deep-MDAE) to extract the latent representation in the hidden layer from the trust relationship matrix to approximate the user factor matrix factorized from the user-item rating matrix. The community regularization is integrated in the joint optimization function to take neighbours' effects into consideration. The results of DMF are applied to initialize the updating variables of Deep-MDAE in order to further improve the recommendation performance. Finally, we validate that the proposed approach outperforms state-of-the-art baselines for recommendation, especially for the cold-start users. © 2013 IEEE

    A scalable recommender system : using latent topics and alternating least squares techniques

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsA recommender system is one of the major techniques that handles information overload problem of Information Retrieval. Improves access and proactively recommends relevant information to each user, based on preferences and objectives. During the implementation and planning phases, designers have to cope with several issues and challenges that need proper attention. This thesis aims to show the issues and challenges in developing high-quality recommender systems. A paper solves a current research problem in the field of job recommendations using a distributed algorithmic framework built on top of Spark for parallel computation which allows the algorithm to scale linearly with the growing number of users. The final solution consists of two different recommenders which could be utilised for different purposes. The first method is mainly driven by latent topics among users, meanwhile the second technique utilises a latent factor algorithm that directly addresses the preference-confidence paradigm
    corecore