4 research outputs found

    Frustration recognition from speech during game interaction using wide residual networks

    Get PDF
    ABSTRACT Background Although frustration is a common emotional reaction during playing games, an excessive level of frustration can harm users’ experiences, discouraging them from undertaking further game interactions. The automatic detection of players’ frustration enables the development of adaptive systems, which through a real-time difficulty adjustment, would adapt the game to the user’s specific needs; thus, maximising players experience and guaranteeing the game success. To this end, we present our speech-based approach for the automatic detection of frustration during game interactions, a specific task still under-explored in research. Method The experiments were performed on the Multimodal Game Frustration Database (MGFD), an audiovisual dataset—collected within the Wizard-of-Oz framework—specially tailored to investigate verbal and facial expressions of frustration during game interactions. We explored the performance of a variety of acoustic feature sets, including Mel-Spectrograms and Mel-Frequency Cepstral Coefficients (MFCCs), as well as the low dimensional knowledge-based acoustic feature set eGeMAPS. Due to the always increasing improvements achieved by the use of Convolutional Neural Networks (CNNs) in speech recognition tasks, unlike the MGFD baseline—based on Long Short-Term Memory (LSTM) architecture and Support Vector Machine (SVM) classifier—in the present work we take into consideration typically used CNNs, including ResNets, VGG, and AlexNet. Furthermore, given the still open debate on the shallow vs deep networks suitability, we also examine the performance of two of the latest deep CNNs, i. e., WideResNets and EfficientNet. Results Our best result, achieved with WideResNets and Mel-Spectrogram features, increases the system performance from 58.8 % Unweighted Average Recall (UAR) to 93.1 % UAR for speech-based automatic frustration recognition
    corecore