4 research outputs found

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded

    On existentially complete triangle-free graphs

    Get PDF
    For a positive integer k, we say that a graph is k-existentially complete if for every 0 ⩽ a ⩽ k, and every tuple of distinct vertices x1, …, xa, y1, …, yk−a, there exists a vertex z that is joined to all of the vertices x1, …, xa and to none of the vertices y1, …, yk−a. While it is easy to show that the binomial random graph Gn,1/2 satisfies this property (with high probability) for k = (1 − o(1)) log2n, little is known about the “triangle-free” version of this problem: does there exist a finite triangle-free graph G with a similar “extension property”? This question was first raised by Cherlin in 1993 and remains open even in the case k = 4. We show that there are no k-existentially complete triangle-free graphs on n vertices with k>8lognloglogn, for n sufficiently large
    corecore