670 research outputs found

    Triangulations without pointed spanning trees

    Get PDF
    Problem 50 in the Open Problems Project asks whether any triangulation on a point set in the plane contains a pointed spanning tree as a subgraph. We provide a counterexample. As a consequence we show that there exist triangulations which require a linear number of edge flips to become Hamiltonian.Acciones Integradas 2003-2004Austrian Fonds zur Förderung der Wissenschaftlichen Forschun

    Maximizing Maximal Angles for Plane Straight-Line Graphs

    Get PDF
    Let G=(S,E)G=(S, E) be a plane straight-line graph on a finite point set S⊂R2S\subset\R^2 in general position. The incident angles of a vertex p∈Sp \in S of GG are the angles between any two edges of GG that appear consecutively in the circular order of the edges incident to pp. A plane straight-line graph is called ϕ\phi-open if each vertex has an incident angle of size at least ϕ\phi. In this paper we study the following type of question: What is the maximum angle ϕ\phi such that for any finite set S⊂R2S\subset\R^2 of points in general position we can find a graph from a certain class of graphs on SS that is ϕ\phi-open? In particular, we consider the classes of triangulations, spanning trees, and paths on SS and give tight bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that were omitted in the previous version are now include

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli

    The greedy flip tree of a subword complex

    Full text link
    We describe a canonical spanning tree of the ridge graph of a subword complex on a finite Coxeter group. It is based on properties of greedy facets in subword complexes, defined and studied in this paper. Searching this tree yields an enumeration scheme for the facets of the subword complex. This algorithm extends the greedy flip algorithm for pointed pseudotriangulations of points or convex bodies in the plane.Comment: 14 pages, 10 figures; various corrections (in particular deletion of Section 4 which contained a serious mistake pointed out by an anonymous referee). This paper is subsumed by our joint results with Christian Stump on "EL-labelings and canonical spanning trees for subword complexes" (http://arxiv.org/abs/1210.1435) and will therefore not be publishe
    • …
    corecore