5 research outputs found

    A Contribution to Triangulation Algorithms for Simple Polygons

    Get PDF
    Decomposing simple polygon into simpler components is one of the basic tasks in computational geometry and its applications. The most important simple polygon decomposition is triangulation. The known algorithms for polygon triangulation can be classified into three groups: algorithms based on diagonal inserting, algorithms based on Delaunay triangulation, and the algorithms using Steiner points. The paper briefly explains the most popular algorithms from each group and summarizes the common features of the groups. After that four algorithms based on diagonals insertion are tested: a recursive diagonal inserting algorithm, an ear cutting algorithm, Kong’s Graham scan algorithm, and Seidel’s randomized incremental algorithm. An analysis concerning speed, the quality of the output triangles and the ability to handle holes is done at the end

    Meshes Preserving Minimum Feature Size

    Get PDF
    The minimum feature size of a planar straight-line graph is the minimum distance between a vertex and a nonincident edge. When such a graph is partitioned into a mesh, the degradation is the ratio of original to final minimum feature size. For an n-vertex input, we give a triangulation (meshing) algorithm that limits degradation to only a constant factor, as long as Steiner points are allowed on the sides of triangles. If such Steiner points are not allowed, our algorithm realizes \ensuremathO(lgn) degradation. This addresses a 14-year-old open problem by Bern, Dobkin, and Eppstein

    TRIANGULATING POLYGONS WITHOUT LARGE ANGLES

    No full text
    corecore