386 research outputs found

    Accelerating Linear Algebra and Machine Learning Kernels on a Massively Parallel Reconfigurable Architecture

    Get PDF
    abstract: This thesis presents efficient implementations of several linear algebra kernels, machine learning kernels and a neural network based recommender systems engine onto a massively parallel reconfigurable architecture, Transformer. The linear algebra kernels include Triangular Matrix Solver (TRSM), LU Decomposition (LUD), QR Decomposition (QRD), and Matrix Inversion. The machine learning kernels include an LSTM (Long Short Term Memory) cell, and a GRU (gated Recurrent Unit) cell used in recurrent neural networks. The neural network based recommender systems engine consists of multiple kernels including fully connected layers, embedding layer, 1-D batchnorm, Adam optimizer, etc. Transformer is a massively parallel reconfigurable multicore architecture designed at the University of Michigan. The Transformer configuration considered here is 4 tiles and 16 General Processing Elements (GPEs) per tile. It supports a two level cache hierarchy where the L1 and L2 caches can operate in shared (S) or private (P) modes. The architecture was modeled using Gem5 and cycle accurate simulations were done to evaluate the performance in terms of execution times, giga-operations per second per Watt (GOPS/W), and giga-floating-point-operations per second per Watt (GFLOPS/W). This thesis shows that for linear algebra kernels, each kernel achieves high performance for a certain cache mode and that this cache mode can change when the matrix size changes. For instance, for smaller matrix sizes, L1P, L2P cache mode is best for TRSM, while L1S, L2S is the best cache mode for LUD, and L1P, L2S is the best for QRD. For each kernel, the optimal cache mode changes when the matrix size is increased. For instance, for TRSM, the L1P, L2P cache mode is best for smaller matrix sizes (N=64,128,256,512N=64, 128, 256, 512) and it changes to L1S, L2P for larger matrix sizes (N=1024N=1024). For machine learning kernels, L1P, L2P is the best cache mode for all network parameter sizes. Gem5 simulations show that the peak performance for TRSM, LUD, QRD and Matrix Inverse in the 14nm node is 97.5, 59.4, 133.0 and 83.05 GFLOPS/W, respectively. For LSTM and GRU, the peak performance is 44.06 and 69.3 GFLOPS/W. The neural network based recommender system was implemented in L1S, L2S cache mode. It includes a forward pass and a backward pass and is significantly more complex in terms of both computational complexity and data movement. The most computationally intensive block is the fully connected layer followed by Adam optimizer. The overall performance of the recommender systems engine is 54.55 GFLOPS/W and 169.12 GOPS/W.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Algorithm Architecture Co-design for Dense and Sparse Matrix Computations

    Get PDF
    abstract: With the end of Dennard scaling and Moore's law, architects have moved towards heterogeneous designs consisting of specialized cores to achieve higher performance and energy efficiency for a target application domain. Applications of linear algebra are ubiquitous in the field of scientific computing, machine learning, statistics, etc. with matrix computations being fundamental to these linear algebra based solutions. Design of multiple dense (or sparse) matrix computation routines on the same platform is quite challenging. Added to the complexity is the fact that dense and sparse matrix computations have large differences in their storage and access patterns and are difficult to optimize on the same architecture. This thesis addresses this challenge and introduces a reconfigurable accelerator that supports both dense and sparse matrix computations efficiently. The reconfigurable architecture has been optimized to execute the following linear algebra routines: GEMV (Dense General Matrix Vector Multiplication), GEMM (Dense General Matrix Matrix Multiplication), TRSM (Triangular Matrix Solver), LU Decomposition, Matrix Inverse, SpMV (Sparse Matrix Vector Multiplication), SpMM (Sparse Matrix Matrix Multiplication). It is a multicore architecture where each core consists of a 2D array of processing elements (PE). The 2D array of PEs is of size 4x4 and is scheduled to perform 4x4 sized matrix updates efficiently. A sequence of such updates is used to solve a larger problem inside a core. A novel partitioned block compressed sparse data structure (PBCSC/PBCSR) is used to perform sparse kernel updates. Scalable partitioning and mapping schemes are presented that map input matrices of any given size to the multicore architecture. Design trade-offs related to the PE array dimension, size of local memory inside a core and the bandwidth between on-chip memories and the cores have been presented. An optimal core configuration is developed from this analysis. Synthesis results using a 7nm PDK show that the proposed accelerator can achieve a performance of upto 32 GOPS using a single core.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Heterogeneous multicore systems for signal processing

    Get PDF
    This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included

    Dynamic Task Execution on Shared and Distributed Memory Architectures

    Get PDF
    Multicore architectures with high core counts have come to dominate the world of high performance computing, from shared memory machines to the largest distributed memory clusters. The multicore route to increased performance has a simpler design and better power efficiency than the traditional approach of increasing processor frequencies. But, standard programming techniques are not well adapted to this change in computer architecture design. In this work, we study the use of dynamic runtime environments executing data driven applications as a solution to programming multicore architectures. The goals of our runtime environments are productivity, scalability and performance. We demonstrate productivity by defining a simple programming interface to express code. Our runtime environments are experimentally shown to be scalable and give competitive performance on large multicore and distributed memory machines. This work is driven by linear algebra algorithms, where state-of-the-art libraries (e.g., LAPACK and ScaLAPACK) using a fork-join or block-synchronous execution style do not use the available resources in the most efficient manner. Research work in linear algebra has reformulated these algorithms as tasks acting on tiles of data, with data dependency relationships between the tasks. This results in a task-based DAG for the reformulated algorithms, which can be executed via asynchronous data-driven execution paths analogous to dataflow execution. We study an API and runtime environment for shared memory architectures that efficiently executes serially presented tile based algorithms. This runtime is used to enable linear algebra applications and is shown to deliver performance competitive with state-of- the-art commercial and research libraries. We develop a runtime environment for distributed memory multicore architectures extended from our shared memory implementation. The runtime takes serially presented algorithms designed for the shared memory environment, and schedules and executes them on distributed memory architectures in a scalable and high performance manner. We design a distributed data coherency protocol and a distributed task scheduling mechanism which avoid global coordination. Experimental results with linear algebra applications show the scalability and performance of our runtime environment

    Dense matrix computations on NUMA architectures with distance-aware work stealing

    Get PDF
    We employ the dynamic runtime system OmpSs to decrease the overhead of data motion in the now ubiquitous non-uniform memory access (NUMA) high concurrency environment of multicore processors. The dense numerical linear algebra algorithms of Cholesky factorization and symmetric matrix inversion are employed as representative benchmarks. Work stealing occurs within an innovative NUMA-aware scheduling policy to reduce data movement between NUMA nodes. The overall approach achieves separation of concerns by abstracting the complexity of the hardware from the end users so that high productivity can be achieved. Performance results on a large NUMA system outperform the state-of-the-art existing implementations up to a two fold speedup for the Cholesky factorization, as well as the symmetric matrix inversion, while the OmpSs-enabled code maintains strong similarity to its original sequential version.The authors would like to thank the National Institute for Computational Sciences for granting us access on the Nautilus system. The KAUST authors acknowledge support of the Extreme Computing Research Center. The BSC-affiliated authors thankfully acknowledges the support of the European Commission through the HiPEAC-3 Network of Excellence (FP7-ICT 287759), Intel-BSC Exascale Lab and IBM/BSC Exascale Initiative collaboration, Spanish Ministry of Education (FPU), Computación de Altas Prestaciones VI (TIN2012-34557), Generalitat de Catalunya (2014-SGR-1051) and the grant SEV-2011-00067 of the Severo Ochoa Program.Peer ReviewedPostprint (published version
    corecore