431 research outputs found

    Polyhedral Computations for the Simple Graph Partitioning Problem

    Get PDF
    The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each containing no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we present a branch-and-cut algorithm for the problem that uses several classes of facet-defining inequalities as cuttingplanes. These are b-tree, clique, cycle with ear, multistar, and S, Tinequalities. Descriptions of the separation procedures that are used for these inequality classes are also given. In order to evaluate the usefulness of the inequalities and the overall performance of the branch-and-cut algorithm several computational experiments are conducted. We present some of the results of these experiments.Branch-and-cut algorithm; Facets; Graph partitioning; Multicuts; Separation procedures

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr

    Schnyder woods for higher genus triangulated surfaces

    No full text
    The final version of this extended abstract has been published in "Discrete and Computational Geometry (2009)"International audienceSchnyder woods are a well known combinatorial structure for planar graphs, which yields a decomposition into 3 vertex-spanning trees. Our goal is to extend definitions and algorithms for Schnyder woods designed for planar graphs (corresponding to combinatorial surfaces with the topology of the sphere, i.e., of genus 0) to the more general case of graphs embedded on surfaces of arbitrary genus. First, we define a new traversal order of the vertices of a triangulated surface of genus g together with an orientation and coloration of the edges that extends the one proposed by Schnyder for the planar case. As a by-product we show how some recent schemes for compression and compact encoding of graphs can be extended to higher genus. All the algorithms presented here have linear time complexity

    Bounding tree-width via contraction on the projective plane and torus

    Get PDF
    If X is a collection of edges in a graph G, let G/X denote the contraction of X. Following a question of Oxley and a conjecture of Oporowski, we prove that every projective-planar graph G admits an edge-partition {X,Y} such that G/X and G/Y have tree-width at most three. We prove that every toroidal graph G admits an edge-partition {X,Y} such that G/X and G/Y have tree-width at most three and four, respectively

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Defective and Clustered Choosability of Sparse Graphs

    Full text link
    An (improper) graph colouring has "defect" dd if each monochromatic subgraph has maximum degree at most dd, and has "clustering" cc if each monochromatic component has at most cc vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than 2d+2d+2k\frac{2d+2}{d+2} k is kk-choosable with defect dd. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree mm, no (1ϵ)m(1-\epsilon)m bound on the number of colours was previously known. The above result with d=1d=1 solves this problem. It implies that every graph with maximum average degree mm is 34m+1\lfloor{\frac{3}{4}m+1}\rfloor-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree mm is 710m+1\lfloor{\frac{7}{10}m+1}\rfloor-choosable with clustering 99, and is 23m+1\lfloor{\frac{2}{3}m+1}\rfloor-choosable with clustering O(m)O(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented
    corecore