131,292 research outputs found

    Multi-dimensional entanglement generation with multi-core optical fibers

    Get PDF
    Trends in photonic quantum information follow closely the technical progress in classical optics and telecommunications. In this regard, advances in multiplexing optical communications channels have also been pursued for the generation of multi-dimensional quantum states (qudits), since their use is advantageous for several quantum information tasks. One current path leading in this direction is through the use of space-division multiplexing multi-core optical fibers, which provides a new platform for efficiently controlling path-encoded qudit states. Here we report on a parametric down-conversion source of entangled qudits that is fully based on (and therefore compatible with) state-of-the-art multi-core fiber technology. The source design uses modern multi-core fiber beam splitters to prepare the pump laser beam as well as measure the generated entangled state, achieving high spectral brightness while providing a stable architecture. In addition, it can be readily used with any core geometry, which is crucial since widespread standards for multi-core fibers in telecommunications have yet to be established. Our source represents an important step towards the compatibility of quantum communications with the next-generation optical networks.Comment: 9 pages, 7 figure

    End-to-End Learning in Optical Fiber Communications: Experimental Demonstration and Future Trends

    Get PDF
    Fiber-optic auto-encoders are demonstrated on an intensity modulation/direct detection testbed, outperforming state-of-the-art signal processing. Algorithms for end-to-end optimization using experimentally collected data are discussed. The end-to-end learning framework is extended for performing optimization of the symbol distribution in probabilistically-shaped coherent systems

    Adaptive Optics pre-compensated laser uplink to LEO and GEO

    Get PDF
    We present the results from a Monte Carlo computer simulation of adaptive optics (AO) pre-compensated laser uplink propagation through the Earth’s atmospheric turbulence from the ground to orbiting satellites. The simulation includes the so-called point-ahead angle and tests several potential AO mitigation modes such as tip/tilt or full AO from the downlink beam, and a laser guide star at the point ahead angle. The performance of these modes, as measured by metrics relevant for free-space optical communication, are compared with no correction and perfect correction. The aim of the study is to investigate fundamental limitations of free-space optical communications with AO pre-compensation and a point-ahead angle, therefore the results represent an upper bound of AO corrected performance, demonstrating the potential of pre-compensation technology. Performance is assessed with varying launch aperture size, wavelength, launch geometry, ground layer turbulence strength (i.e. day/night), elevation angle and satellite orbit (Low-Earth and Geostationary). By exploring this large parameter space we are able examine trends on performance with the aim of informing the design of future optical ground stations and demonstrating and quantifying the potential upper bounds of adaptive optics performance in free-space optical communications

    Performance analysis of interferometric noise due to unequally powered interferers in optical networks

    Get PDF
    Interferometric crosstalk has been identified as the cause of performance limits in future transparent all-optical networks. A large number of studies have been conducted on this phenomenon using a vast array of evaluation techniques. However, most major studies have considered that although the interfering terms may differ in number, the power contribution that they all make will be identical for all interfering terms. Although this situation is easy to analyze, it does not necessarily represent the situation that is likely to occur in a real network, which will be constructed of nodes with different degrees of connectivity, quite possibly from different vendors, and therefore with differing crosstalk characteristics. This paper describes a study on the impact of unequally powered interfering terms using a rigorous analysis technique. To validate the use of the chosen technique, the paper begins by bench-marking a number of common evaluation techniques against empirically derived, experimentally verified noise performance formulas
    corecore