471 research outputs found

    Quantum Machine Learning: A tutorial

    Get PDF
    This tutorial provides an overview of Quantum Machine Learning (QML), a relatively novel discipline that brings together concepts from Machine Learning (ML), Quantum Computing (QC) and Quantum Information (QI). The great development experienced by QC, partly due to the involvement of giant technological companies as well as the popularity and success of ML have been responsible of making QML one of the main streams for researchers working on fuzzy borders between Physics, Mathematics and Computer Science. A possible, although arguably coarse, classification of QML methods may be based on those approaches that make use of ML in a quantum experimentation environment and those others that take advantage of QC and QI to find out alternative and enhanced solutions to problems driven by data, oftentimes offering a considerable speedup and improved performances as a result of tackling problems from a complete different standpoint. Several examples will be provided to illustrate both classes of methods.Ministerio de Ciencia, Innovación y Universidades GC2018-095113-B-I00,PID2019-104002GB-C21, and PID2019-104002GB-C22 (MCIU/AEI/FEDER, UE

    Forecasting the CATS benchmark with the Double Vector Quantization method

    Full text link
    The Double Vector Quantization method, a long-term forecasting method based on the SOM algorithm, has been used to predict the 100 missing values of the CATS competition data set. An analysis of the proposed time series is provided to estimate the dimension of the auto-regressive part of this nonlinear auto-regressive forecasting method. Based on this analysis experimental results using the Double Vector Quantization (DVQ) method are presented and discussed. As one of the features of the DVQ method is its ability to predict scalars as well as vectors of values, the number of iterative predictions needed to reach the prediction horizon is further observed. The method stability for the long term allows obtaining reliable values for a rather long-term forecasting horizon.Comment: Accepted for publication in Neurocomputing, Elsevie

    RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement

    Get PDF
    Extreme learning machine (ELM) as an emerging branch of shallow networks has shown its excellent generalization and fast learning speed. However, for blended data, the robustness of ELM is weak because its weights and biases of hidden nodes are set randomly. Moreover, the noisy data exert a negative effect. To solve this problem, a new framework called RMSE-ELM is proposed in this paper. It is a two-layer recursive model. In the first layer, the framework trains lots of ELMs in different groups concurrently, then employs selective ensemble to pick out an optimal set of ELMs in each group, which can be merged into a large group of ELMs called candidate pool. In the second layer, selective ensemble is recursively used on candidate pool to acquire the final ensemble. In the experiments, we apply UCI blended datasets to confirm the robustness of our new approach in two key aspects (mean square error and standard deviation). The space complexity of our method is increased to some degree, but the results have shown that RMSE-ELM significantly improves robustness with slightly computational time compared with representative methods (ELM, OP-ELM, GASEN-ELM, GASEN-BP and E-GASEN). It becomes a potential framework to solve robustness issue of ELM for high-dimensional blended data in the future.Comment: Accepted for publication in Mathematical Problems in Engineering, 09/22/201

    Deep Randomized Neural Networks

    Get PDF
    Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed, either in a stochastic or a deterministic fashion. Typical examples of such systems consist of multi-layered neural network architectures where the connections to the hidden layer(s) are left untrained after initialization. Limiting the training algorithms to operate on a reduced set of weights inherently characterizes the class of Randomized Neural Networks with a number of intriguing features. Among them, the extreme efficiency of the resulting learning processes is undoubtedly a striking advantage with respect to fully trained architectures. Besides, despite the involved simplifications, randomized neural systems possess remarkable properties both in practice, achieving state-of-the-art results in multiple domains, and theoretically, allowing to analyze intrinsic properties of neural architectures (e.g. before training of the hidden layers’ connections). In recent years, the study of Randomized Neural Networks has been extended towards deep architectures, opening new research directions to the design of effective yet extremely efficient deep learning models in vectorial as well as in more complex data domains. This chapter surveys all the major aspects regarding the design and analysis of Randomized Neural Networks, and some of the key results with respect to their approximation capabilities. In particular, we first introduce the fundamentals of randomized neural models in the context of feed-forward networks (i.e., Random Vector Functional Link and equivalent models) and convolutional filters, before moving to the case of recurrent systems (i.e., Reservoir Computing networks). For both, we focus specifically on recent results in the domain of deep randomized systems, and (for recurrent models) their application to structured domains

    Deep Randomized Neural Networks

    Get PDF
    Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed, either in a stochastic or a deterministic fashion. Typical examples of such systems consist of multi-layered neural network architectures where the connections to the hidden layer(s) are left untrained after initialization. Limiting the training algorithms to operate on a reduced set of weights inherently characterizes the class of Randomized Neural Networks with a number of intriguing features. Among them, the extreme efficiency of the resulting learning processes is undoubtedly a striking advantage with respect to fully trained architectures. Besides, despite the involved simplifications, randomized neural systems possess remarkable properties both in practice, achieving state-of-the-art results in multiple domains, and theoretically, allowing to analyze intrinsic properties of neural architectures (e.g. before training of the hidden layers' connections). In recent years, the study of Randomized Neural Networks has been extended towards deep architectures, opening new research directions to the design of effective yet extremely efficient deep learning models in vectorial as well as in more complex data domains. This chapter surveys all the major aspects regarding the design and analysis of Randomized Neural Networks, and some of the key results with respect to their approximation capabilities. In particular, we first introduce the fundamentals of randomized neural models in the context of feed-forward networks (i.e., Random Vector Functional Link and equivalent models) and convolutional filters, before moving to the case of recurrent systems (i.e., Reservoir Computing networks). For both, we focus specifically on recent results in the domain of deep randomized systems, and (for recurrent models) their application to structured domains

    Reservoir Topology in Deep Echo State Networks

    Full text link
    Deep Echo State Networks (DeepESNs) recently extended the applicability of Reservoir Computing (RC) methods towards the field of deep learning. In this paper we study the impact of constrained reservoir topologies in the architectural design of deep reservoirs, through numerical experiments on several RC benchmarks. The major outcome of our investigation is to show the remarkable effect, in terms of predictive performance gain, achieved by the synergy between a deep reservoir construction and a structured organization of the recurrent units in each layer. Our results also indicate that a particularly advantageous architectural setting is obtained in correspondence of DeepESNs where reservoir units are structured according to a permutation recurrent matrix.Comment: Preprint of the paper published in the proceedings of ICANN 201
    corecore