67,452 research outputs found

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Performance and scalability of indexed subgraph query processing methods

    Get PDF
    Graph data management systems have become very popular as graphs are the natural data model for many applications. One of the main problems addressed by these systems is subgraph query processing; i.e., given a query graph, return all graphs that contain the query. The naive method for processing such queries is to perform a subgraph isomorphism test against each graph in the dataset. This obviously does not scale, as subgraph isomorphism is NP-Complete. Thus, many indexing methods have been proposed to reduce the number of candidate graphs that have to underpass the subgraph isomorphism test. In this paper, we identify a set of key factors-parameters, that influence the performance of related methods: namely, the number of nodes per graph, the graph density, the number of distinct labels, the number of graphs in the dataset, and the query graph size. We then conduct comprehensive and systematic experiments that analyze the sensitivity of the various methods on the values of the key parameters. Our aims are twofold: first to derive conclusions about the algorithms’ relative performance, and, second, to stress-test all algorithms, deriving insights as to their scalability, and highlight how both performance and scalability depend on the above factors. We choose six wellestablished indexing methods, namely Grapes, CT-Index, GraphGrepSX, gIndex, Tree+∆, and gCode, as representative approaches of the overall design space, including the most recent and best performing methods. We report on their index construction time and index size, and on query processing performance in terms of time and false positive ratio. We employ both real and synthetic datasets. Specifi- cally, four real datasets of different characteristics are used: AIDS, PDBS, PCM, and PPI. In addition, we generate a large number of synthetic graph datasets, empowering us to systematically study the algorithms’ performance and scalability versus the aforementioned key parameters
    • …
    corecore