93,747 research outputs found

    Effects of hypodynamic simulations on the skeletal system of monkeys

    Get PDF
    A research and development program was undertaken to evaluate the skeletal losses of subhuman primates in hypodynamic environments. The goals of the program are: (1) to uncover the mechanisms by which weightlessness affects the skeletal system; (2) to determine the consequences and reversibility of bone mineral losses; and (3) to acquire a body of data needed to formulate an appropriate countermeasure program for the prevention of skeletal deconditioning. Space flight experiment simulation facilities are under development and will be tested for their capability in supporting certain of the requirements for these investigations

    Objective identification of upper limb tremor in multiple sclerosis using a wrist-worn motion sensor: establishing validity and reliability

    Get PDF
    Introduction Over 25% of people with multiple sclerosis experience tremor, which may impact on activities of daily living and quality of life. Yet there is no method to objectively measure tremor and effectiveness of interventions on tremor. This study aimed to test validity and reliability of a new objective measurement for upper limb tremor in people with multiple sclerosis. Method Twelve participants with multiple sclerosis who self-reported tremor were observed performing standardised tasks. Validity and reliability of a new method to detect tremor from wrist movement was established against occupational therapist observation of tremor (FAHN). Concurrent validity of severity (displacement) of tremor was assessed. Responsiveness to change in tremor characteristics was explored in a sub-set of participants using weighted wrist-cuffs. Results The new method correctly predicted 98.2% of tremor cases identified by the occupational therapist, with high sensitivity (0.988) and specificity (0.976). Calculated displacement of tremor correlated with FAHN tremor severity scores moderately (rs = .452, p = .004). The new measure was responsive to changes in tremor characteristics due to change in weight of wrist-cuffs. Conclusion The new method of characterising tremor in those with multiple sclerosis demonstrated excellent validity and reliability in relation to tremor identified by an occupational therapist, and could provide valuable objective insight into the efficacy of interventions. </jats:sec

    Rest tremor in Parkinson's disease: body distribution and time of appearance

    Get PDF
    Objective To assess body distribution and timing of appearance of rest tremor in Parkinson's disease. Methods Information was obtained by a computerized database containing historical information collected at the first visit and data collected during the subsequent follow-up visits. Information on rest tremor developed during the follow-up could be therefore obtained by our own observation in a proportion of patients. Results Among 289 patients, rest tremor was reported at disease onset in 65.4% of cases and detected at last follow-up examination in 74.4% of patients. Analysis of patients who did not report rest tremor at disease onset indicated that 26% of such patients (9% in the overall population) manifested rest tremor over the disease course. Rest tremor spread to new sites in 39% of patients who manifested rest tremor at disease onset. Regardless of tremor presentation at disease onset or during the follow-up, upper limb was the most frequent tremor localization. Over the follow-up, rest tremor developed faster in the upper limb than in other body sites. The risk of developing rest tremor during the follow-up was not affected by sex, side of motor symptom onset and site of tremor presentation. However, age of disease onset > 63 years was associated with an increased risk of rest tremor spread. Conclusions This study provides new information about body distribution and timing of rest tremor appearance during the course of early stages of Parkinson's disease that may help clinicians in patients' counselling

    Report of the 1st Planning Workshop for CELSS Flight Experimentation

    Get PDF
    A workshop held March 23 and 24, 1987 to establish a base upon which a CELSS flight experiment program will be developed, is summarized. The kind of information necessary for productivity assessment was determined. In addition, generic experiments necessary to gather that information were identified and prioritized. General problems of hardware and equipment were defined. The need for the hardware to provide a stress-free environment, not only for productivity, but also to make more readily identifiable disturbing mission factors, was recognized

    CELSS Program Meeting

    Get PDF
    A meeting on the potential contributions of plant science to the goals of Controlled Ecological Life Support System (CELSS) research produced discussions that helped to focus on a variety of topics. In the area of volatiles and soluble organics, microbial activity, disease, and productivity, participants emphasized the need to know more about the consequences of closure for the growth of plants. Under nutrient delivery systems, the problems focus on the need to maintain a stable, optimum nutrient system. Lighting systems discussions emphasized unique methods of direct lighting and development of improved irradiation sources. Flight experiment opportunities were outlined by one speaker. Documentation of the Plant Growth Module was discussed. The last day's discussion focused on the organization of the research group to be involved in the development and use of a two to three cubic meter sealed chamber and ancillary equipment

    Botulinum toxin type A for Holmes tremor secondary to thalamic hemorrhage

    Get PDF
    Holmes tremor (HT) is a low-frequency rest and intentional tremor frequently affecting the upper limb. The tremor, typically aggravated by movements, may in addition show an intrinsic postural component

    Model of deep non-volcanic tremor part I: ambient and triggered tremor

    Get PDF
    There is evidence of triggering of tremor by seismic waves emanating from distant large earthquakes. The frequency contents of triggered and ambient tremor are largely identical, suggesting that tremor does not depend directly on the nature of the source. We show here that the model of plate dynamics developed earlier by us is an appropriate tool for describing the onset of tremor. In the framework of this model, tremor is an internal response of a fault to a failure triggered by external disturbances. The model predicts generation of radiation in a frequency range defined by the fault parameters. Other specific features predicted are: the upper limit of the size of the emitting area is a few dozen km; tremor accompanies earthquakes and aseismic slip; the frequency content of tremor depends on the type of failure. The model also explains why a tremor has no clear impulsive phase, in contrast to earthquakes. A comparatively small effective normal stress (hence a high fluid pressure) is required to make the model consistent with observed tremor parameters. Our model indicates that tremor is not necessarily a superposition of low frequency earthquakes, as commonly assumed, although the latter may trigger them. The approach developed complements the conventional viewpoint which assumes that tremor reflects a frictional process with low rupture speed. Essentially our model adds the hypothesis that resonant-type oscillations exist inside a fault. This addition may change our understanding of the nature of tremor in general, and the methods of its identification and location in particular.Comment: 32 pages, 16 figures. arXiv admin note: text overlap with arXiv:1202.091

    Model for triggering of non-volcanic tremor by earthquakes

    Get PDF
    There is evidence of tremor triggering by seismic waves emanating from distant large earthquakes. The frequency content of both triggered and ambient tremor are largely identical, suggesting that this property does not depend directly on the nature of the source. We show here that the model of plate dynamics developed earlier by us is an appropriate tool for describing tremor triggering. In the framework of this model, tremor is an internal response of a fault to a failure triggered by external disturbances. The model predicts generation of radiation in a frequency range defined by the fault parameters. Thus, although the amplitude and duration of a tremor burst may reflect the "personality" of the source, the frequency content does not. The model also explains why a tremor has no clear impulsive phase, in contrast to earthquakes. The relationship between tremor and low frequency earthquakes is discussed.Comment: 9 pages, 1 figur
    • …
    corecore