233 research outputs found

    Study of phase noise in optical coherent systems

    Get PDF
    Le bruit de phase est un problème important dans la conception de systèmes cohérents optiques. Bien que le bruit de phase soit étudié énormément dans les communications sans fil, certains aspects de bruit de phase sont nouveaux dans des systèmes cohérents optiques. Dans cette thèse, nous explorons les statistiques de bruit de phase dans les systèmes optiques cohérentes et proposons une nouvelle technique pour améliorer la robustesse du système envers le bruit de phase. Notre première contribution traite de l’étude des statistiques de bruit de phase en présence de compensation électronique de la dispersion chromatique (CD) dans des systèmes cohérents. Nous montrons que le modèle proposé précédemment pour l’interaction de CD avec bruit de phase doit être modifié à cause d’un modèle trop simple pour la récupération de phase. Nous dérivons une expression plus précise pour le bruit de phase estimé par la récupération de phase avec décision dirigée (DD), et utilisons cette expression pour modifier les statistiques de décision pour les symboles reçus. Nous calculons le taux d’erreur binaire (BER) pour le format de transmission DQPSK semi-analytiquement en utilisant nos statistiques de décision modifiées et montrons que pour la récupération de phase idéale, le BER semi-analytique est bien assorti avec le BER simulé avec la technique Monte-Carlo (MC). Notre deuxième contribution est l’adaptation d’une technique de codage MLCM pour les systèmes cohérents limités par le bruit de phase et le bruit blanc additif Gaussien (AWGN). Nous montrons que la combinaison d’une constellation optimisée pour le bruit de phase avec MLCM offre un système robuste à complexité modérée. Nous vérifions que la performance de MLCM dans des systèmes cohérents avec constellations 16-aires se détériorés par le bruit de phase non-linéaire et de Wiener. Pour le bruit de phase non-linéaire, notre conception de MLCM démontre une performance supérieure par rapport àune conception de MLCM déjà présente dans la littérature. Pour le bruit de phase de Wiener, nous comparons deux format de transmission, constellations carrées et optimisée pour bruit de phase, et deux techniques de codage, MLCM et codage à débit uniforme. Nos résultats expérimentaux pour BER après codage suivent les mêmes tendances que le BER simulé et confirment notre conception.Phase noise is an important issue in designing today’s optical coherent systems. Although phase noise is studied heavily in wireless communications, some aspects of phase noise are novel in optical coherent systems. In this thesis we explore phase noise statistics in optical coherent systems and propose a novel technique to increase system robustness toward phase noise. Our first contribution deals with the study of phase noise statistics in the presence of electronic chromatic dispersion (CD) compensation in coherent systems. We show that previously proposed model for phase noise and CD interaction must be modified due to an overly simple model of carrier phase recovery. We derive a more accurate expression for the estimated phase noise of decision directed (DD) carrier phase recovery, and use this expression to modify the decision statistics of received symbols. We calculate bit error rate (BER) of a differential quadrature phase shift keying (DQPSK) system semi-analytically using our modified decision statistics and show that for ideal DD carrier phase recovery the semi-analytical BER matches the BER simulated via Monte-Carlo (MC) technique. We show that the semi-analytical BER is a lower bound of simulated BER from Viterbi-Viterbi (VV) carrier phase recovery for a wide range of practical system parameters. Our second contribution is concerned with adapting a multi-level coded modulation (MLCM) technique for phase noise and additive white Gaussian noise (AWGN) limited coherent system. We show that the combination of a phase noise optimized constellation with MLCM offers a phase-noise robust system at moderate complexity. We propose a numerical method to design set-partitioning (mapping bits to symbols) and optimizing code rates for minimum block error rate (BLER).We verify MLCM performance in coherent systems of 16-ary constellations impaired by nonlinear and Wiener phase noise. For nonlinear phase noise, superior performance of our MLCM design over a previously designed MLCM system is demonstrated in terms of BLER. For Wiener phase noise, we compare optimized and square 16-QAM constellations assuming either MLCM or uniform rate coding. We compare post forward error correction (FEC) BER in addition to BLER by both simulation and experiment and show that superior BLER performance is translated into post FEC BER. Our experimental post FEC BER results follow the same trends as simulated BER, validating our design

    Convolutional coded dual header pulse interval modulation for line of sight photonic wireless links.

    Get PDF
    The analysis and simulation for convolutional coded dual header pulse interval modulation (CC-DH-PIM) scheme using a rate ½ convolutional code with the constraint length of 3 is presented. Decoding is implemented using the Viterbi algorithm with a hard decision. Mathematical analysis for the slot error rate (SER) upper bounds is presented and results are compared with the simulated data for a number of different modulation techniques. The authors show that the coded DH-PIM outperforms the pulse position modulation (PPM) scheme and offers >4 dB code gain at the SER of 10?4 compared to the standard DH-PIM. Results presented show that the CC-DH-PIM with a higher constraint length of 7 offers a code gain of 2 dB at SER of 10?5 compared to the CC-DH-PIM with a constraint length of 3. However, in CC-DH-PIM the improvement in the error performance is achieved at the cost of reduced transmission throughput compared to the standard DH-PIM

    Rate-Adaptive Coded Modulation for Fiber-Optic Communications

    Get PDF
    Rate-adaptive optical transceivers can play an important role in exploiting the available resources in dynamic optical networks, in which different links yield different signal qualities. We study rate-adaptive joint coding and modulation, often called coded modulation (CM), addressing non-dispersion-managed (non-DM) links, exploiting recent advances in channel modeling of these links. We introduce a four-dimensional CM scheme, which shows a better tradeoff between digital signal processing complexity and transparent reach than existing methods. We construct a rate-adaptive CM scheme combining a single low-density parity-check code with a family of three signal constellations and using probabilistic signal shaping. We evaluate the performance of the proposed CM scheme for single-channel transmission through long-haul non-DM fiber-optic systems with electronic chromatic-dispersion compensation. The numerical results demonstrate improvement of spectral efficiency over a wide range of transparent reaches, an improvement over 1 dB compared to existing methods

    Trellis-Coded Modulation in PSK and DPSK Communications

    Get PDF
    Coded modulation is for the first time investigated in phase-modulated systems, with coherent as well as differential detection. We find coding gains of 3.0 and 1.7 dB, already with the simplest possible trellis code

    Spectral Efficiency Optimization in Flexi-Grid Long-Haul Optical Systems

    Full text link
    Flexible grid optical networks allow a better exploitation of fiber capacity, by enabling a denser frequency allocation. A tighter channel spacing, however, requires narrower filters, which increase linear intersymbol interference (ISI), and may dramatically reduce system reach. Commercial coherent receivers are based on symbol by symbol detectors, which are quite sensitive to ISI. In this context, Nyquist spacing is considered as the ultimate limit to wavelength-division multiplexing (WDM) packing. In this paper, we show that by introducing a limited-complexity trellis processing at the receiver, either the reach of Nyquist WDM flexi-grid networks can be significantly extended, or a denser-than-Nyquist channel packing (i.e., a higher spectral efficiency (SE)) is possible at equal reach. By adopting well-known information-theoretic techniques, we design a limited-complexity trellis processing and quantify its SE gain in flexi-grid architectures where wavelength selective switches over a frequency grid of 12.5GHz are employed.Comment: 7 pages, 9 figure

    Advanced Equalization Techniques for Digital Coherent Optical Receivers

    Get PDF

    Four-Dimensional Coded Modulation with Bit-wise Decoders for Future Optical Communications

    Get PDF
    Coded modulation (CM) is the combination of forward error correction (FEC) and multilevel constellations. Coherent optical communication systems result in a four-dimensional (4D) signal space, which naturally leads to 4D-CM transceivers. A practically attractive design paradigm is to use a bit-wise decoder, where the detection process is (suboptimally) separated into two steps: soft-decision demapping followed by binary decoding. In this paper, bit-wise decoders are studied from an information-theoretic viewpoint. 4D constellations with up to 4096 constellation points are considered. Metrics to predict the post-FEC bit-error rate (BER) of bit-wise decoders are analyzed. The mutual information is shown to fail at predicting the post- FEC BER of bit-wise decoders and the so-called generalized mutual information is shown to be a much more robust metric. For the suboptimal scheme under consideration, it is also shown that constellations that transmit and receive information in each polarization and quadrature independently (e.g., PM-QPSK, PM- 16QAM, and PM-64QAM) outperform the best 4D constellations designed for uncoded transmission. Theoretical gains are as high as 4 dB, which are then validated via numerical simulations of low-density parity check codes
    • …
    corecore