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Résumé

Le bruit de phase est un problème important dans la conception de systèmes cohérents op-
tiques. Bien que le bruit de phase soit étudié énormément dans les communications sans fil,
certains aspects de bruit de phase sont nouveaux dans des systèmes cohérents optiques. Dans
cette thèse, nous explorons les statistiques de bruit de phase dans les systèmes optiques co-
hérentes et proposons une nouvelle technique pour améliorer la robustesse du système envers
le bruit de phase.

Notre première contribution traite de l’étude des statistiques de bruit de phase en présence de
compensation électronique de la dispersion chromatique (CD) dans des systèmes cohérents.
Nous montrons que le modèle proposé précédemment pour l’interaction de CD avec bruit de
phase doit être modifié à cause d’un modèle trop simple pour la récupération de phase. Nous
dérivons une expression plus précise pour le bruit de phase estimé par la récupération de
phase avec décision dirigée (DD), et utilisons cette expression pour modifier les statistiques
de décision pour les symboles reçus. Nous calculons le taux d’erreur binaire (BER) pour le
format de transmission DQPSK semi-analytiquement en utilisant nos statistiques de décision
modifiées et montrons que pour la récupération de phase idéale, le BER semi-analytique est
bien assorti avec le BER simulé avec la technique Monte-Carlo (MC).

Notre deuxième contribution est l’adaptation d’une technique de codage MLCM pour les
systèmes cohérents limités par le bruit de phase et le bruit blanc additif Gaussien (AWGN).
Nous montrons que la combinaison d’une constellation optimisée pour le bruit de phase avec
MLCM offre un système robuste à complexité modérée. Nous vérifions que la performance
de MLCM dans des systèmes cohérents avec constellations 16-aires se détériorés par le bruit
de phase non-linéaire et de Wiener. Pour le bruit de phase non-linéaire, notre conception de
MLCM démontre une performance supérieure par rapport àune conception de MLCM déjà
présente dans la littérature. Pour le bruit de phase de Wiener, nous comparons deux format
de transmission, constellations carrées et optimisée pour bruit de phase, et deux techniques
de codage, MLCM et codage à débit uniforme. Nos résultats expérimentaux pour BER après
codage suivent les mêmes tendances que le BER simulé et confirment notre conception.
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Abstract

Phase noise is an important issue in designing today’s optical coherent systems. Although
phase noise is studied heavily in wireless communications, some aspects of phase noise are
novel in optical coherent systems. In this thesis we explore phase noise statistics in optical
coherent systems and propose a novel technique to increase system robustness toward phase
noise.

Our first contribution deals with the study of phase noise statistics in the presence of electro-
nic chromatic dispersion (CD) compensation in coherent systems. We show that previously
proposed model for phase noise and CD interaction must be modified due to an overly simple
model of carrier phase recovery. We derive a more accurate expression for the estimated phase
noise of decision directed (DD) carrier phase recovery, and use this expression to modify the
decision statistics of received symbols. We calculate bit error rate (BER) of a differential
quadrature phase shift keying (DQPSK) system semi-analytically using our modified decision
statistics and show that for ideal DD carrier phase recovery the semi-analytical BER matches
the BER simulated via Monte-Carlo (MC) technique. We show that the semi-analytical BER
is a lower bound of simulated BER from Viterbi-Viterbi (VV) carrier phase recovery for a
wide range of practical system parameters.

Our second contribution is concerned with adapting a multi-level coded modulation (MLCM)
technique for phase noise and additive white Gaussian noise (AWGN) limited coherent sys-
tem. We show that the combination of a phase noise optimized constellation with MLCM
offers a phase-noise robust system at moderate complexity. We propose a numerical method
to design set-partitioning (mapping bits to symbols) and optimizing code rates for minimum
block error rate (BLER). We verify MLCM performance in coherent systems of 16-ary constel-
lations impaired by nonlinear and Wiener phase noise. For nonlinear phase noise, superior
performance of our MLCM design over a previously designed MLCM system is demonstra-
ted in terms of BLER. For Wiener phase noise, we compare optimized and square 16-QAM
constellations assuming either MLCM or uniform rate coding. We compare post forward error
correction (FEC) BER in addition to BLER by both simulation and experiment and show
that superior BLER performance is translated into post FEC BER. Our experimental post
FEC BER results follow the same trends as simulated BER, validating our design.
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Introduction

0.1 Motivation

The optical fiber communication has witnessed tremendous advances since its deployment in
80’s. Increasing data traffic and demand for faster and more secure communication play an
important role in pushing this advancement. Today, demand for higher bit rates is overwhel-
ming due to the emergence of broadband application services like video streaming and huge
increase in mobile data traffic. As an example, the exponential growth of data network traffic
in US is shown in Fig. 0.1. It can be seen that the rate of growth in bit rate is about 60
percent each year. According to Cisco visual networking index (VNI) forecast, shown in Fig.
0.2, there will be thirteen times more data traffic around the globe in 2017. Last year’s global
mobile data traffic was twelve times the size of the entire global Internet in 2000 [2].

In order to meet this demand for the increasing traffic, novel solutions in optical communi-
cations are needed. Novel technologies are being developed currently, and some are already
commercialized. Optical coherent detection with the aid of digital signal processing (DSP) is
a promising solution. Successful deployment of 100 Gb/s coherent systems using polarization-
division multiplexing quadrature phase shift keying (PDM-QPSK) confirms the trend toward
coherent systems in future optical communication systems. Fig. 0.3 shows the required optical
signal to noise ratio (OSNR) for 10 Gb/s intensity modulation with direct detection (IMDD),
40 Gb/s differential QPSK (DQPSK), 100 Gb/s PDM-QPSK coherent system and future 400
Gb/s systems. The upgrade from 10/40 Gb/s systems by increasing baud rate to the 100 Gb/s
system can be well understood from this figure as this upgrade would require much larger
required OSNR than 100 Gb/s coherent system. Today, one of the trends in long-haul optical
communications is to upgrade the existing 10 Gb/s systems with 100 Gb/s while maintaining
the already installed links. This upgrade should also consider the limitations imposed by the
already installed links. For example, the upgrade needs 10 times improvement in OSNR sensi-
tivity and 100 times improvement in chromatic dispersion (CD) tolerance [12]. From Fig. 0.3,
it can be seen that the tolerable penalty due to transmission effects is decreased by upgrading
to 100 or 400 Gb/s systems. In this regard, DSP techniques play crucial role in the future
optical communication systems to have acceptable penalty in the system. The objective of the
research in this thesis is to study and develop DSP techniques for two important impairments
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Figure 0.1 – Exponential growth of data network traffic in US (red circle) and the processing
power (average of top 500 supercomputers). Flop designates for floating point operation per
second [1].

Figure 0.2 – Forecast for growth in mobile data traffic [2].

in optical coherent systems : CD and phase noise.

Although both CD and phase noise exist in IMDD systems and they have been the subject
of heavy research, their analysis and compensation is different in coherent systems. Compen-
sation of huge amounts of CD using DSP is unique to coherent systems as in IMDD systems
optical compensation typically is employed. Phase noise is much more important in coherent
systems as phase of the electrical field could carry information bits. Both CD and phase noise
are estimated and compensated in the DSP of the coherent system. For phase noise, there
exist several techniques to estimate and compensate as phase noise has been studied a lot
in radio communications. However, approaches to cope with phase noise in fiber optics are
different to some extent. This is due to the higher levels of phase noise due to lasers. In
addition, interaction of phase noise with dispersion and nonlinearity is something unique to
optical coherent systems. Study of these unique aspects of phase noise and dispersion is the
motivation for the research in this thesis. In the following sections, basic concepts relating
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Figure 0.3 – Required OSNR vs. bit rate for different systems [3].

to coherent systems and DSP techniques for compensating phase noise and dispersion are
reviewed. Then, major contributions and structure of the thesis are presented.

0.2 Background

In this section, first concepts of optical coherent systems are reviewed and its system model is
presented. Then, two DSP functions, namely phase noise estimation and CD compensation,
playing an important role in the thesis, are described in detail. Finally, a literature review of
coded modulation techniques which is related to the subject of chapters 4 and 5 is presented.

0.2.1 Model of an optical coherent system

A schematic of the optical coherent system is shown in Figure 0.4. In the transmitter, the
transmit laser is modulated by using Mach-Zehnder modulators (MZMs), pulse carvers and
beam splitters (BS). In Figure 0.4, the modulation is assumed to be polarization multiplex
(PM) binary phase shift keying (BPSK) so that the orthogonal polarizations of the input
electrical field are separated by polarization BS (PBS) and then each signal polarization
is phase modulated by the data using an MZM. Pulse carvers employ MZMs modulated
with a sinusoid at the electrical input. They are used to generate return-to-zero (RZ) pulses
with a desired pulse width (determined by the frequency of the sinusoid). The modulator of
higher modulation formats like QPSK is sometimes called an IQ modulator. It consists of two
modulators in two arms, with a 90 degree phase shift between them. These transmitters are
shown in Figure 0.5. The electrical field of the transmitted signal can be written as :

Etx =
∑

k
xkp(t− kTs)e(ωst+φt(t)) (1)

3



Figure 0.4 – Schematic of an optical coherent system [4]

where xk is a 2×1 vector representing the kth symbol (one symbol for each of the polarization
states) and p(t), Ts, ωs and φt(t) are the pulse shape, symbol interval, optical carrier frequency
and the phase noise of the transmit laser respectively. The signal is passed through the fiber
channel having NA spans. Propagation of the electric field in the fiber is modelled by solving
the vectorial nonlinear Schrodinger equation (NLSE) which can take into account all the
effects of dispersion, loss, nonlinearity and polarization mode dispersion (PMD) together [13].
While not shown in Figure 0.4, the amplified spontaneous emission (ASE) noise due to the
amplifiers is added after each span. This noise should be added as a complex additive white
Gaussian noise (AWGN). Although addition of the noise after each span is the most accurate
approach, the computational burden for solving NLSE is increased considerably. It is possible
to use the noise loading approximation where the total ASE is added at the end of the spans
[14].

The propagated signal is fed into the receiver where the incoming electrical field beats with
the local oscillator (LO) laser and is down converted to baseband. The down conversion can
be performed using a homodyne or heterodyne structure [4]. In this thesis, we use a homodyne
receiver in which LO and transmit laser have the same frequencies and their beating results
in a baseband electrical signal. In the homodyne structure, after beating of the in-phase and
quadrature components of the incoming electrical field by the LO using 3 dB couplers, the
signals are detected using balanced photodetectors (PDs). In Figure 0.4, each output of the
down converter, yi(t), is a complex valued signal resulting from the addition of the in-phase
and quadrature phase signals. We also assume an asynchronous coherent receiver in this thesis,
i.e., a receiver detecting the signal based on the envelope of the signal and without any optical
phase tracking [15].

After down conversion, the signal is low pass filtered and then sampled by ADCs and the
digital data is sent to the DSP unit for processing and decision. The DSP is responsible for
compensation of different impairments happening during the propagation. The schematic of
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Figure 0.5 – BPSK and QPSK transmitters [5]

the DSP unit for a coherent receiver is shown in Figure 0.6. Only the main units of DSP
are shown and given in their order of application, other DSP units may be added to enhance
performance. Various algorithms exist in the literature for DSP functions in Figure 0.6 [16].
As an example, digital filters for compensation of chromatic dispersion (CD) and PMD are
explained in [6, 17]. Phase estimation methods to compensate for phase noise are discussed
in [18, 7]. We will discuss more about the algorithms for dispersion compensation and phase
estimation in the following sections. Even compensation of nonlinearities is possible in DSP
using a method called back propagation discussed in [19, 20]. An important aspect of all
algorithms is that they should be parallelizable. This is due to the mismatch between ADC
sampling rate and clock frequency of available DSPs. Frequency of the digital samples coming
from ADC is in the range of 10 to 40 GS/s while the clock frequency of the DSP is in the
range of 100 to 800 MHz. Due to this mismatch, we must use multiplexers and demultiplexers
to do parallel processing in DSP. For example, if one uses a demultiplexer of 1 : m (so that
the DSP clock frequency is 1/m times the sampling frequency), in the nth DSP operation
only results of operations n−m and after can be used.

This section provides background on optical coherent systems. Specifically, the system model
of a coherent system is used in chapter 2 where analysis is based on a simplified model of the
system described in this section.

0.2.2 Compensation algorithms for dispersion and phase noise

In this section, we present a literature review of the algorithms used in two important units
of DSP in Figure 0.6 ; CD and carrier phase estimation.

CD Compensation

Fiber dispersion is a linear impairment that must be compensated in fiber-optic communica-
tions. Fiber dispersion can be separated as CD and PMD. The transfer function of the CD
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Figure 0.6 – Schematic of the DSP unit in a coherent receiver. Here there are two polariza-
tions [5]

in the frequency domain can be written as :

HCD(jω) = exp
(
−j 1

2β2Lω
2 − j 1

6β3Lω
3
)

(2)

where β2 and β3 are the second and third order dispersion coefficients, L is the fiber length
and ω is the angular frequency (here carrier frequency ωs is set to zero). The CD broadens
the pulses so that it causes intersymbol interference (ISI). Another dispersion impairment,
PMD, is caused by the random birefringence of the fiber. In contrast with CD, PMD is not
a deterministic dispersion. It can be shown that PMD can be modelled by dividing the fiber
into segments whose birefringence is constant but random ; the total transfer function of the
fiber is given by the product of the matrices of each segment [13]. PMD can be modelled as
a random delay in the output pulses. The probability density function (pdf) of this delay is
Maxwellian and its mean is proportional to the square root of the fiber length L.

Traditionally, optical techniques for CD compensation are used in the 10 Gb/s and 40 Gb/s
(direct detection) systems by employing dispersion compensating fibers (DCFs), fiber Bragg
gratings and other techniques. In coherent receivers, DSP compensation can be employed so
that these optical procedures can be reduced or totally removed. We begin by discussing CD
compensation when ASE is absent and then discuss CD equalization in the presence of ASE.
When there is no ASE noise, the equalizer for compensating CD should invert the transfer
function given in (2). If we neglect third order dispersion (β3 = 0), filter taps can be found
analytically. The continuous time filter can be found using the inverse Fourier transform of

6



(2) which gives the impulse response of the channel. This is given by [17] :

hCD(t) =
√

c

jDλ2L
exp

(
j

πc

Dλ2L
t2
)

(3)

where c and λ are the light velocity and wavelength and D = −(2πc/λ2)β2. We should inverse
the sign of β2 and adopt this continuous time impulse response for use in the discrete time
domain (assuming proper sampling to prevent aliasing). The resulting discrete finite impulse
response (FIR) filter taps are given by [17] :

wn =

√
jcTs

2

Dλ2L
exp

(
−j πcTs

2

Dλ2L
n2
)
,−
⌊
N

2

⌋
≤ n ≤

⌊
N

2

⌋
(4)

N = 2
⌊
|D|λ2

2cTs2

⌋
+ 1

where Ts is the sampling time and bxc represent the largest integer value smaller than x.
The value of N specified avoids aliasing. We can further reduce the number of taps in this
filter by using windowing, thus reducing complexity but also reducing performance. Infinite
impulse response (IIR) filters are also proposed for CD compensation [21]. These filters have
considerably smaller number of taps compared with FIR filters, but their implementation is
harder due to feedback.

In the presence of ASE noise, the filter given by (4) is not optimal. In this case, the equa-
lization methods based on minimum mean square error (MMSE) can be exploited [22]. The
equalization can be done either in the time or frequency domain [16], [6]. Although in prin-
ciple it is possible to do equalization having one sample per symbol, this requires a matched
filter before the ADC which is difficult to realize and in addition it is vulnerable to sampling
time jitter. Due to these reasons, in practice oversampling of the optical signal is done by the
ADCs. It can be shown that the minimum oversampling rate to compensate arbitrary amount
of dispersion is 3/2 [6].

We now explain the time-domain MMSE equalizer. For simplicity of the formulation, we only
consider one polarization but the extension to two polarizations is straightforward. The mth

sample of the received signal can be written as (in the absence of PMD and nonlinearity) :

ym =
∑
k

xkq (mT − kTs) + n′(mT ) (5)

where q(t) = p(t) ∗ hADC(t) ∗ hCD(t) and n′(t) = hADC(t) ∗ n(t) are the received dispersed
pulse and filtered noise (hADC(t) is the impulse response of the filter modelling the ADC front
end). T = Ts/S where S is the oversampling rate. A vector containing N adjacent samples (N
must be larger than the system memory) of the mth sample is formed to be used for filtering :

ym =
[
ySm+bN2 c ySm+bN2 c−1 ... ySm−bN2 c+1 ySm−bN2 c

]T
(6)
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Figure 0.7 – Schematic of the adaptive filter [6]

The estimated symbol is given by :
x̂k = wT

opty (7)

where wopt is the optimal filter obtained by the MMSE criterion. It can be shown that this
filter is given by [16] :

wopt =
(
E
[
y∗yT

])−1
E [xky∗] (8)

where E[.] represents the expectation value. The filter taps Wopt can be derived analytically
for this system in terms of q(t) and hADC(t). When the number of filter taps is large, the
filtering can be done more efficiently in the frequency domain using overlap-and-add method
[6].

The time-domain CD equalizer presented in this section is used in the analysis of phase noise
and CD interaction in chapter 2. In addition, an MMSE filter is used in offline processing of
experimental data in chapters 3 and 5. The MMSE in those chapters is employed to reduce
the impact of front-end low-pass fiter.

Phase noise estimation methods

One of the most important challenges for optical coherent systems is to estimate and compen-
sate phase noise of the signal. Phase noise mainly originates from the non-ideal transmit and
receive lasers having non-zero linewidth. In early optical coherent systems, an optical PLL
was used to synchronize the signal phase to that of the LO. However, optical PLLs contain a
feedback loop which is sensitive to the loop delay [23]. This delay must be very small for high
bit rates and it is difficult to realize ; for instance, at 10 Gb/s this delay should be less than
a few tens of nanoseconds [24]. In modern optical coherent systems, the task of the optical
PLL is accomplished by the carrier phase estimation algorithms in DSP, enabling the use of
coherent detection.

Phase estimation methods are heavily studied in radio frequency communications and consi-
dered a classical topic [25]. Although most of these methods can be applied to the optical
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domain, one should note that the typical linewidth of lasers used in the optical systems is
higher than that of radio frequency, so higher levels of phase noise must be handled. Several
phase estimation methods have been proposed for optical coherent systems. In this subsection,
we study the following methods :

1. Maximum a posteriori (MAP) phase estimation [24]

2. Decision-directed (DD) phase estimation [26, 27]

3. Power-law phase estimation [7]

The idea of MAP phase estimation is to find the most probable pair of phase noise and data
given the received signal. The MAP estimate can be formulated as one shot, that is, symbol by
symbol, or sequential. We examine the one shot approach. Assuming back to back operation
(neglecting dispersion and nonlinearity), the received symbol yk at the k symbol interval can
be written as :

yk = xke
jφk + nk (9)

where nk and φk are AWGN and total phase noise (receive and transmit lasers) respectively.
The phase noise of both transmit and receive lasers are included in φk. Given nk is zero
mean, σ2

n variance AWGN and φk is a Wiener process, x̂k and φ̂k are MAP estimates if they
maximize the joint pdf of yk, xk and φk. The joint pdf f(yk, xk, φk) can be written as :

f(yk, xk, φk) = f(yk|xk, φk)f(xk)f(φk) (10)

where f(xk) is the probability mass function (pmf) of symbols which is generally assumed to
be uniform and f(φk) is the pdf of phase noise for a Wiener process. Because increments of
Wiener process are iid Gaussian random variables, we can write :

f(φk) = 1√
2πσ2

p

exp
(
−(φk − φk−1)2

2σ2
p

)
f(φk−1) (11)

where σ2
p = 2π∆fTs, in which ∆f is the total linewidth (receive and transmit lasers).

As nk is AWGN, the conditional pdf f(yk|xk, φk) is :

f(yk|xk, φk) = 1
2πσ2

n

exp

−
∣∣∣yk − xkejφk ∣∣∣2

2σ2
n

 (12)

We should note that this conditional pdf is a two dimensional pdf because the AWGN is
complex noise having two iid Gaussian components with mean zero and variance σ2

n. The
joint pdf is given by :
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Figure 0.8 – Decision-directed phase estimator [7]

f(yk, xk, φk) = 1
M

1
2πσ2

n

exp

−
∣∣∣yk − xkejφk ∣∣∣2

2σ2
n

 k∏
i=1

1√
2πσ2

p

exp
(
−(φi − φi−1)2

2σ2
p

)
(13)

where M is the number of constellation points and the symbols are assumed to be equipro-
bable. Although the MAP phase estimation is optimal, the maximization problem has no
analytical solution and numerical solution is computationally expensive for real-time imple-
mentations. Clearly, the MAP sequential estimate would be even more complex than this one
shot MAP estimate.

In DD phase estimation, symbol detection and phase estimation are not performed jointly.
Symbol detection generates x̂k and this estimate is passed to the phase estimation algorithm.
This method is near optimal when the system BER is low, as the symbol values are valid
most of the time. A block diagram of this method is shown in Figure 0.8. As shown in this
figure, the output of the decision block is used to remove the data modulation by multiplying
the conjugate of the decision symbol (shown here as d̂k) by the received signal yk. It is
evident that this method is vulnerable to burst errors because these errors are fed back to the
estimator. A training sequence is sequenced to bootstrap operation. Some modifications of
this method are proposed in [26]. Decision feedback introduces delay, and is therefore difficult
to implement in parallel DSP architectures. Given the high bit rates of interest in coherent
optical communication, parallel architectures are essential. For this reason, decision feedback
is mostly applied to modulation formats where the symbol amplitude is not constant, e.g.,
QAM. For constant amplitude modulations such as M-PSK, the power-law estimates are
effective and offer easy parallelization.

Power-law phase estimation consists of two stages. In the first stage, data modulation is
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Figure 0.9 – A schematic of power-law phase estimator

eliminated to have a soft estimate of the phase noise at each symbol interval. In the second
stage, these soft estimates are filtered in order to minimize their noise. The filter to optimally
reduce noise in mean square sense is the Wiener filter. Suboptimal filters are also used in
practice because of their simplicity. A schematic of this phase estimator is shown in Figure
0.9. Suppose that the modulation format in (9) is M-PSK, the received signal raised to the
M th power can be written as

yMk = (xkejφk + nk)M = xMk e
jMφk +Mx∗ke

j(M−1)φknk +O
(
n2
k

)
(14)

where O
(
n2
k

)
is high-order noise terms. If the modulation format in (9) is M-PSK, xMk equals

one (i.e., data modulation is eliminated).

Let ψk be the total phase error due to phase noise φk and ASE nk, i.e., ψk = arg(yk) where
arg(.) function takes the phase values between −π and π. In order to find the soft estimate
of the phase error ψk, we find the argument of yMk and divide it by M

ψ̂k = 1
M

arg
(
yMk

)
≈ φk + n′k (15)

where n′k is the residual noise. The phase noise φk is modelled as a Wiener process, a summa-
tion of iid Gaussian random variables whose range is −∞ and ∞. To resolve this mismatch
in the ranges, the phase unwrapping must be done on the estimates ψ̂k. In order to smooth
variations in the phase estimate over time phase unwrapping is used. Phase unwrapping is
often accomplished by comparing the phase estimate ψ̂k with the previous ψ̂k−1 and adding
±2π/M when the difference

∣∣∣ψ̂k − ψ̂k−1
∣∣∣ is greater than π/M . This phase unwrapping is a

nonlinear function and it can cause cycle slips (discontinuities in multiples of 2π).

The next step is to filter the soft estimates ψ̂k and smooth n′k the noise term. It is possible to
find a filter that minimizes the mean square error εk = E[|φ̂k−φk|2] where φ̂k is the output of
the filter. The transfer function of the Wiener filter that minimizes εk is often derived using
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(a) (b) (c)

Figure 0.10 – Variance of phase error in rad versus number of filter taps NB (a) Linewidth
(LW) = 2 MHz and SNR = 15 dB (b)LW = 200 kHz and SNR = 15 dB (c) LW = 2 MHz
and SNR = 20 dB. Modulation format is QPSK with symbol rate 10.7 Gb/s.

z-transform. The impulse response of the filter is given by [24] :

wn = αr

1− α2α
nu(n) + αr

1− α2α
−nu(−n) (16)

α = (1 + r/2)−
√

(1 + r/2)2 − 1

where u(n) is the discrete-time step function and r = σ2
p/σ

2
n′ is the ratio of the phase noise

and n′k variances. The filter is non-causal. Causality can be achieved by buffering and delay
in order to access samples after the current sample. As the taps of the Wiener filter decrease
exponentially around n = 0, the effects in truncating the coefficients and forming an FIR filter
with finite number of taps are tolerable. Instead of a truncated Wiener filter, an FIR filter,
optimal in MMSE sense, [24] or a filter with uniform taps wn = 1/NB (NB is the number of
filter taps) can be used. The latter is sometimes called a moving average filter.

The power-law phase estimator with a moving average filter is commonly used with some
minor modifications. This algorithm of phase estimation is called Viterbi-Viterbi algorithm
[28]. This approach is shown to be well-suited for practical implementation [29] and is widely
employed. In practice, the incoming data is split into a number of blocks to be processed
in parallel. The length of each block is equal to the length of the moving average filter. To
reduce complexity, phase estimate calculated for the center symbol of each block is used for
the whole block. In practice, a modification should be done for the symbols corresponding to
the data at the edges of each block as the phase estimate of the center symbol may not be
good for these edge symbols [30].

In order to quantify performance of different estimators, a phase error is defined as the diffe-
rence between the estimated phase and the true phase

∆φk = φ̂k − φk (17)
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Figure 0.11 – Variance of phase error versus symbol position. NB = 20 and other system
specifications are the same as part (a) of Figure 0.10.

This phase error is a random variable whose variance quantifies the quality of the estimator.
As we might expect, the suboptimum FIR filters with a finite number of taps have larger phase
error variance compared with the Wiener filter. Here, we study the variance of the phase error
for the moving average filter. The non causal Wiener filter tracks changes in phase noise by
exploiting the known dynamics of Brownian motion process. The moving average filter is
optimal only for a fixed phase offset in AWGN. When using the moving average filter, larger
NB decreases AWGN by averaging. However within large NB, the phase has more random
variation. Thus variance of phase error changes when the filter length NB is changed. When
the dominant noise is the AWGN (low SNR regime), larger NB gives smaller phase error
variance because larger NB means a better averaging over Gaussian noise whose mean is
zero. In the case where the phase noise is the dominant noise source, smaller NB gives better
performance as variation of phase noise is large from sample to sample and it is better to
have less neighbouring samples contribute in the phase noise of a specific symbol. There is an
optimum filter length where the phase error variance is minimum. This effect is sometimes
called block length effect.

In Fig. 0.10, the variance of ∆φk is shown versus the filter length for different values of SNR
and laser linewidth. An analytical equation in [24] for phase noise variance is used in plotting
Fig. 0.10.

Using the moving average filter means that the we average over the soft estimates of a block
of NB symbols to find an estimate of phase noise. Depending on the position of the symbol in
the block the variance of ∆φk is different. Intuitively, having the symbol at the center of the
block results in the smallest phase error variance. This effect is shown in Figure 0.11 where
the block length (or equivalently the filter length) is 20.

Concepts of phase estimation presented in this section will be used through this thesis. In
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Figure 0.12 – Example of a TCM encoder.

chapter 2, DD phase estimation is assumed for the analysis of phase noise and CD interaction
and the lower bound of BER is calculated based on this assumption. In the simulation results,
BER performance of DD and power-law phase estimation methods is compared. In chapters
3 and 4, a DD method is employed for carrier phase recovery of 16 quadrature amplitude
modulation (16-QAM) in offline processing of experimental data.

0.2.3 An introduction to coded modulation techniques

Coded modulation techniques refer to the general idea of combining modulation and coding.
These techniques were first used in band-limited wired communication to get coding gain
without bandwidth expansion. In traditional coding techniques, an overhead is added to the
information bits and then encoded bits are converted to symbols and transmitted with a
certain baud rate, which determine signal bandwidth. For a fixed bit rate, adding overhead
leads to higher baud rate or bandwidth expansion. This means that spectral efficiency is
reduced. Concept of coded modulation techniques is to accommodate added bits of overhead
for a higher modulation format and keep the baud rate fixed. In this way, if the coding gain
due to adding overhead surpasses the degradation due to smaller Euclidian distance of higher
modulation format, a more spectrally efficient transmission is possible compared to traditional
coding techniques where coding and modulation are separate entities. For example in Fig. 0.12,
two bits of QPSK modulation are first converted to three bits in a convolutional encoder of
rate 2/3 and then an 8-PSK signal is transmitted with the same baud rate. It can be shown
that if a Viterbi decoder with enough number of states is used for decoding, a coding gain
can be achieved despite reduction in Euclidian distance from QPSK to 8-PSK.

There are many works on satellite and wireless communications regarding combination of
coding and modulation. Some pioneering work can be found in [31, 32, 33, 8]. The coded
modulation methods can be divided into three general categories : 1) Trellis coded modulation
(TCM) 2) Multilevel-coded modulation (MLCM) and 3) Bit-interleaved coded modulation
(BICM). Set-partitioning, first introduced by Ungerboeck in [8] for a TCM system, is generally
used to assign bits to symbols in the TCM and MLCM. An example of set-partitioning for
square 16-QAM is shown in Fig. 0.13. It can be observed that Euclidian distance is increased
from top to down layers. The coding strategy is to use strongest coding protection for upper
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Figure 0.13 – Example of a 16-QAM set-partitioning [8].

layers and the weakest (or even no coding) for lower layers. We will discuss more about these
concepts in chapter 4. It should be mentioned that set-partitioning is not optimal for iterative
demapping and decoding used in BICM.

In most published work on coded modulation in wireless and satellite communication, the
channel is assumed to be an AWGN or a fading channel. However, there are a few papers
which consider phase noise in the channel [34, 35]. Recently, coded modulation is also studied
for use in optical communication. There are a number of works which study coded modulation
in this context but assuming an AWGN model for the channel [36, 37, 38, 39]. In two published
works phase noise is taken into account ; one is presented for nonlinear phase noise [11] and
one for actual laser phase noise in the TCM systems used in optical communication [40].
Recently in [41] nonlinear Schrodinger equation (without assuming phase noise) is used to
study coded modulation in optical communication systems. Although TCM is studied well for
optical communication, in almost all the channel is assumed to be AWGN [42, 43, 44, 45, 46].

More work is needed to apply current proposals for MLCM coding to optical communications
as in most of the works a realistic channel model taking into account phase noise, nonlinearity,
etc is not considered. In chapter 4 of this thesis, an MLCM coding is proposed for an optical
coherent system impaired by phase noise and AWGN.

0.3 Structure of the thesis

The background presented in previous sections is useful in better understanding of two specific
problems which are focus of the research in this thesis. In this section, the structure of the
thesis is presented and material of each chapter is briefly described. Contributions in each
chapter are outlined to highlight the novelty of the research.

In chapter 2, we study phase noise and CD interaction in optical coherent systems through
analysis and simulation. We show that a previously proposed model for this interaction can be
improved. We verify validity of the proposed modification by simulation. Our contributions
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in this chapter are the following :

1. Derivation of a more accurate expression for the estimated phase noise by carrier phase
recovery

2. Derivation of a more accurate correlation matrix for the probability density function
(PDF) of received samples after carrier phase recovery

3. Demonstration that our BER prediction of QPSK and differential QPSK (DQPSK)
using the modified pdf matches the BER of DD carrier phase recovery and is a lower
bound of BER from VV carrier phase recovery

4. Study extension of the modified pdf to 16-QAM modulation

In chapter 3, we study MLCM for optical coherent systems impaired by phase noise. We
propose a numerical method for finding optimal set-partitioning and code rates. We apply
the method to a phase noise optimized and square 16-QAM constellation and explore the
performance by simulation. The contributions in this chapter include :

1. Proposing a numerical method to find optimal set-partitioning and code rates for mini-
mum block error rate (BLER) which is applicable to an arbitary constellation and pdf
of received samples

2. Applying our MLCM design method to 16-QAM ring constellation in a coherent system
impaired by nonlinear phase noise ; showing that our designed MLCM coding outper-
forms an MLCM coding designed previously in the literature

3. Applying our MLCM design method to phase noise optimized and square 16-QAM
constellation in a coherent system impaired by phase noise ; showing by Monte-Carlo
(MC) simulations that our MLCM coding performs better than uniform rate coding
with the same overhead in terms of post forward error correction (FEC) BER

4. Showing by simulation that minimization of BLER translates into minimization of BER

5. Exploring phase noise regime where post FEC BER of MLCM coding for phase noise
optimized constellation performs better than square 16-QAM

In chapter 4, we present an experimental demonstration using MLCM coding, designed ac-
cording to previous chapter, in an optical coherent system. We explore experimental post
FEC BER of MLCM and uniform rate coding using either phase noise optimized or square
16-QAM constellations. Our contributions in this chapter are the following :

1. Experimental demonstration of MLCM coding for 16-ary constellations in an optical
coherent system

2. Finding experimentally phase noise regimes where the optimized constellation exceeds
square 16-QAM in terms of experimental post FEC BER
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3. Showing by experiment that MLCM coding designed with our approach performs better
than uniform rate coding in terms of post FEC BER

4. Finding experimentally phase noise regimes where the optimized constellation combined
with MLCM coding performs better than uniform rate coding

17





Chapitre 1

Interaction of LO phase noise and
chromatic dispersion

1.1 Introduction

Electronic equalization of fiber CD using DSP is an important advantage [6] of optical coherent
systems over IMDD systems among other [4, 47, 48]. The cost and complexity of optical
dispersion compensating devices are avoided and, equally important, the system becomes
more robust to nonlinearity [49, 50, 51, 52]. In addition, adaptive equalization can be fully
exploited [53].

Electronic CD compensation, in contrast to optical dispersion compensation, suffers from
equalization enhanced phase noise (EEPN) which stems from the interaction of receive laser
(or local oscillator, LO) phase noise with the taps of the dispersion equalizer. The penalty
induced by EEPN increases with linewidth, symbol rate and dispersion, and limits the maxi-
mum allowable LO linewidth or system reach [54, 55]. The EEPN impact is more serious for
high spectral efficiency modulation formats like QAM having a compact constellation [56].

The impact of EEPN on coherent systems has been studied in [55, 9, 54, 57, 58, 56, 59, 60,
61, 62]. Variance of EEPN was studied theoretically in [55] and a power penalty expression
was suggested by adding the EEPN variance to the ASE noise variance. It was found in [55]
that this penalty increases linearly with linewidth, fiber length and symbol rate. Simulation
results reported in [56, 54] suggest that this penalty should instead increase exponentially
with fiber length.

A two dimensional PDF of received symbols before decision was derived analytically in [9]
and an elliptically shaped PDF was predicted in presence of EEPN. However, the impact of
the carrier phase estimator (CPE) was not considered in the analysis. The sum of transmitter
and receiver phase noises was used for phase tracking, essentially ignoring EEPN. The impact
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of EEPN on VV algorithm was also studied briefly by simulation in [9] which indicated that
time-variation of VV phase estimate does not follow sum of the true transmitter and receiver
phase noises closely.

The analytical expression for the BER floor due to EEPN was found in [55], assigning an
effective laser linewidth in the presence of EEPN. A CPE based on one-tap normalized least
mean square filter was used to validate the analysis. The impact of EEPN on reduced-guard-
interval coherent optical orthogonal frequency-division multiplexing (CO-OFDM) systems
was investigated in [60].

As described above, almost all the analytical results concerning EEPN are based on the
assumption that the estimated phase by the CPE is approximately the sum of transmitter
and receiver phase noises. This is certainly the case for an ideal CPE in optically dispersion-
compensated systems. However, this model is no longer valid when the EEPN contribution
becomes significant.

An analysis of the EEPN was also presented in [63] with and without a digital coherence
enhancement (DCE) technique developed in [63, 64, 65] to reduce EEPN. It was shown that
the EEPN contribution can be considered as an additive zero-mean Gaussian noise whose
variance can be approximated with the variance derived in [55]. However, the assumption on
the CPE is the same as [9].

An experimental verification of EEPN simulation results is reported in [66]. A reduction in
the phase error variance of the received symbols in the presence of uncompensated dispersion
is reported and it is shown that this reduction is proportional to the fiber dispersion.

In this chapter, we examine estimated phase noise in the presence of EEPN with a more
realistic model for the CPE. The CPE in our derivation has perfect removal of data modu-
lation, but retains additive noise that can be reduced by means of a moving average filter.
An expression for the estimated phase noise as a function of transmitter and receiver phase
noises is provided. The derivation corresponds to the performance of a CPE with ideal DD
method. The expression that we provide for CPE phase shows the same behavior reported
experimentally in [66] ; the phase variance is reduced by increasing dispersion.

With the expression for the DD CPE phase, we derive the semi-analytical PDF of the decision
statistic in this chapter after the CPE. We show that a simple modification of the covariance
matrix in the conditional PDF reported in [9] provides a much better approximation of the
PDF of a practical CPE such as VV. For example our analysis correctly predicts the circularly
shaped PDF following CPE rather than the elliptically shaped PDF predicted in [9]. Using our
semi-analytical PDF, we calculate BER for a DQPSK system and compare it with BER from
Monte-Carlo (MC) simulation of the system employing either a VV or ideal DD algorithm.
We show that our semi-analytical PDF provides an accurate estimate of the system BER

20



kx
( )CDh t

ˆ
kx

Decision

( )Tj te  ( )Rj te 
ˆ
kj

e


kw

kT ky

( )p t ( )oeh t

kr

( )n t

Coherent receiver

Figure 1.1 – Block diagram of a coherent system.

and power penalty for the DD CPE method. In addition, simulation results suggest that this
semi-analytical BER can be considered as a lower bound for the BER of VV algorithm.

We also investigate the extension of our results to QAM. Our simulation results show that the
same analytical expression for the CPE phase estimate accurately predicts performance for
ideal DD CPE. The semi-analytical PDF of the decision statistic is also applicable to QAM,
as no assumption on the modulation format is made in deriving this PDF. The accuracy of
this BER needs to be investigated further in the case of other CPEs.

Using our analytical PDFs for evaluating BER via numerical integration is faster than MC
simulation for BERs by several orders of magnitude, even at low BER, e.g. 10−4. In our
semi-analytical method, a number of covariance matrices must be evaluated for a few two
dimensional Gaussian PDFs, which can be performed at low complexity. Although we present
the analysis for an ideal DD carrier recovery, we can approximate the BER for another carrier
recovery if we know the SNR penalty of that specific carrier recovery compared to the ideal
DD. In addition to finding BER, having an accurate approximation of the PDFs is useful to
implement soft FEC algorithms, as log-likelihood ratios must normally be provided to the
decoder.

This chapter is organized as follows. In section 1.2, we consider the system model and nota-
tions for the analysis in the following sections. Our first contribution, an expression for the
CPE phase estimate and the analytical PDF of the decision statistic, is presented in section
1.3. Our second contribution, modification of the correlation matix in the PDF of decision
statistics, is covered in section 1.3.2. Our third contribution, proving by simulation that our
BER prediction corresponds to BER from DD carrier phase recovery being a lower bound to
VV carrier recovery BER, is presented in section 1.4. Our fourth contribution, extension to
QAM modulation is introduced in section 1.5. Finally, we draw the conclusions in section 1.6.

1.2 System model for analysis of EEPN

In this section, we introduce the coherent system model to be used in our analysis. A simplified
block diagram of a coherent system is shown in Fig. 1.1 where the input symbols xk are

21



transmitted using pulse shape p(t). Single polarization transmission is considered here, but it
is possible to extend the analysis to the dual-polarization case. The fiber is assumed to show
only second order CD, of coefficient β2 (transfer function HCD(jω) in Eq. (2) where β3 = 0).
In addition to the CD effects introduced by impulse response hCD(t), the transmitted signal
is corrupted by noise sources φT (t), φR(t) and n(t), respectively the transmitter and receiver
laser phase noises and additive noise due to optical amplifiers. We have not considered the
nonlinear effects in our model. Nonlinear effects can be taken into account by modifying the
noise sources. For example in [67], it is shown that the phase noise can still be modeled as a
Wiener process whose parameters are calculated based on a empirical model.

The received signal is mixed with the local oscillator and photo-detected. Mixing is modeled
by multiplication by a phase noise process (i.e., zero frequency offset is assumed), and the
photodetection and RF front end are modeled by a single impulse response hoe(t). The signal
is sampled at arbitrary rate 1/T (typically T is half the symbol duration).

Electronic dispersion equalization is performed using a finite-impulse response (FIR) filter
corresponding to the inverse transfer function of the fiber. The N taps of the equalizer wn
are given in Eq. (4) [17].

After CD compensation, carrier phase recovery is performed by derotating the signal using
the estimated phase φ̂k. This estimated phase can be obtained by several different methods,
as we discuss in the following sections.

1.3 Analysis in the case of perfect data remodulation

In this section we first provide an expression for the estimated phase φ̂k using remodulation
with perfect knowledge of the transmitted symbols (i.e., ideal decision feedback). We use this
expression to find the PDF of the decision statistic yk in Fig. 1.1. The details of the analysis
can be found in the appendix.

1.3.1 Analytical expression for CPE phase estimate

An essential part of a coherent receiver is the CPE where the phase offset is estimated and the
equalized signal is derotated with the estimated phase. Algorithms used in the CPE typically
consist of two stages ; in the first stage, data modulation is eliminated and in the second
stage the obtained raw phase estimate is filtered to reduce noise [24, 7, 29]. For example, data
modulation can be eliminated by using decision feedback or raising to the power of M (for
M -PSK signal) in the VV algorithm.

In this chapter, we estimate the best possible performance of the CPE assuming ideal re-
moval of modulation. When modulation is completely removed, the residual signal consists
of equalization enhanced phase noise (EEPN) and noise stemming from ASE. To remove the
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additive noise, a moving average filter is used. While the Wiener filter would give lowest mean
square error for the estimate, the suboptimal moving average filter is analytically tractable
and gives a reasonable approximation of the performance of the phase estimate with perfect
data remodulation.

The number of taps in the CD compensating filter, 2N + 1, can be considerable for long fiber
runs. However, the block length 2NB+1 of the moving average filter is chosen large enough to
average additive noise, yet short enough to assure that the tracked laser phase noise remains
relatively constant. Let rm be the output of the CD compensating filter for the mth symbol
(see appendix 1 for details). The phase estimate is

φ̂k = Arg


k+NB∑

m=k−NB

rmx
∗
m

 (1.1)

We define
∆n,k = φR(kT − nT )− φR(kT ) (1.2)

to be the phase increment in the receiver LO phase noise for the kth sample at the nth filter
tap in the CD filter. In section 1.7 (Appendix 1), we show that the output of the moving
average filter for ideal data remodulation is

φ̂k ≈ φR(kT ) + φT (kT ) +
∑
n

Re{wnpd(−nT )}∆n,k + n′k + n′′k (1.3)

where Re denotes real part, pd(t) = p(t) ⊗ hCD(t) ⊗ hoe(t) (⊗ being the convolution) is
the overall system impulse response. n′k and n′′k are the noise contribution from intersymbol
interference (ISI) attributable to EEPN and the residual ASE noise respectively . The former
noise source n′k contains zero-mean independent symbols that add incoherently and is thus
averaged out in the moving average filter ; see appendix for more details. This term is an
unpredictable part of the EEPN as it contains symbols unknown at the time of applying the
CPE, despite ideal decision feedback.

The summation over n in Eq. (1.3) has non-zero mean and can be tracked by the CPE, along
with the laser phase drifts φR(kT ) and φT (kT ). We call this summation the predictable part
of the EEPN as it varies slowly as compared with n′k. Note that when there is no electronic
dispersion equalization in the system, the equalizer can be imagined as a one tap filter of
w0 = 1. As ∆0,k = 0, the EEPN contribution is zero and the estimated phase reduces to
φ̂k = φT + φR.

1.3.2 Modifying the symbol error PDF

In this section, we find the PDF of the decision statistic yk = rke
−jφ̂k (shown in Fig. 1.1). We

neglect transmitter phase noise, i.e., φT (t) = 0, as the contribution of the transmitter phase
noise in the presence of EEPN is negligible. In section 1.8 (Appendix 2) we use Eq. (1.3) to
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show that the decision statistic yk, in the case of perfect remodulation and a moving average
filter to suppress noise, can be written as

yk ≈ x[k] +
N∑

n=−N
sn,k∆n,k + ñk (1.4)

where ñk with variance σ̃2 is a combination of ASE noise and the noise in phase estimation
process and

sn,k = j
∑
i

xiwnpd [(k − n)T − iTs]− jx[k]Re{wnpd(−nT )} (1.5)

The index of the symbol at the kth sample time is given by [k].

In [55, 9, 63] they assume perfect knowledge of the true phase noise φR(kT ) and use this as
the phase estimate φ̂k although it is highly suboptimal and essentially ignores EEPN. While
the expression for yk in Eq. (1.4) remains unchanged, sn,k is the case of φ̂k = φR(kT )

sn,k = j
∑
i

xiwnpd [(k − n)T − iTs] (1.6)

which matches the results in [9].

Using Eq. (1.4), we can find the PDF of yk following the same procedure in [9], but with the
more realistic and higher performance estimate φ̂k in Eq. (1.3). Hence our calculations are
based on the analysis leading to Eq. (1.5) that includes the EEPN term depending on the
desired bit x[k], and not exclusively the ISI term as in previous analysis. We write ∆n,k as a
sum of independent and identically distributed (iid) Gaussian random variables ∆n,k−∆n±1,k

each having zero mean and variance σ2 = 2π∆νLOT (∆νLO being the LO linewidth)

yk = x[k] +
−1∑

n=−N

[
(∆n,k −∆n+1,k)

n∑
m=−N

sm,k

]
+

N∑
n=1

[
(∆n,k −∆n−1,k)

N∑
m=n

sm,k

]
+ nk

(1.7)

Suppose 2M is the system memory multiplied by the oversampling rate (2 in this chapter).
Given symbol pattern X = [x[M−k], ..., x[k−1], x[k+1], ..., x[M+k]] and desired symbol x[k], we
can calculate sn,k in Eq. (1.5). The conditional PDF f(yk|X) is a complex Gaussian PDF
with mean vector [Re{x[k]}, Im{x[k]}]tr and covariance matrix C which is given in section 1.8
(Appendix 2). This covariance matrix is a function of sn,k, σ̃2 and σ2. The conditional pdf
f(yk|x[k]) is a Gaussian mixture, that is, the normalized sum over PDFs f(yk|X) for different
symbol patterns X

f(yk|x[k]) = 1
|P|

∑
X∈P

f(yk|X) (1.8)

where P is the set of all possible symbol patterns X and |P| is its cardinality. The total PDF
f(yk) is an average of PDFs f(yk|x[k]) over all possible symbols x[k] (or constellation points).
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Although the number of symbol patterns could be very large, we show by simulation that a
summation over a limited number of patterns chosen randomly is sufficient to find a relatively
accurate estimate of the PDF. For calculating sn,k, we need to calculate an infinite sum in Eq.
(1.5) which can be truncated in practice to the finite system memory 2M . It can be shown
that M ≈ N . Thus, for L = 3000 km, Rs = 28 Gbaud and two samples per symbol, M and
N are around 640.

1.4 Simulation results

We consider the performance of three phase estimation methods using both MC and semi-
analytical techniques. The methods are
• ideal decision feedback for removal of modulation and a moving average filter to remove
noise (ideal DD)
• Viterbi-Viterbi for removal of modulation and a moving average filter to remove noise (VV)
• Using an ideal pilot tone (PT) to extract perfect knowledge of φR(t) + φT (t)
In the case of ideal DD we use our previous analysis to generate a semi-analytical prediction of
the BER based on Eq. (1.8) using Eq. (1.5), as well as an MC simulation where ideal removal
of modulation is followed by a moving average filter. In the case of VV, we only generate MC
BER curves using VV algorithm. In the PT case, a continuous wave PT provides a separable
signal at the receiver input whose phase is the sum of transmitter and receiver phase noise,
φR(t) + φT (t). We compare BER from MC for this PT method with an analytical formula
where φR(t) +φT (t) is assumed for phase noise cancelation of received symbols [55, 63]. Note
that the PT is clearly suboptimal, but was examined in [55, 9] due to tractability of the
analysis. Unfortunately the known total phase noise at the input provided by PT is before
CD compensation, while the phase noise derotation is after CD compensation when the
filtered phase noise no longer resembles the input phase noise.

1.4.1 System parameters

We perform numerical simulations of a coherent system and compare the analytical prediction
of BER with the MC simulation results. We consider simulation of QPSK in this section and
study the QAM modulation in the next section. In the case of QPSK transmitter differential
and Gray coding are used. A root-raised cosine pulse having roll-off factor 1 is used as the
transmitted pulse p(t).

The fiber span of length L is assumed to have only second-order CD with dispersion coefficient
β2 = 21.6 ps2/km. It is assumed that fiber loss is perfectly compensated with amplifier gains
and the additive Gaussian noise due to amplifiers is added at the end of the fiber span. The
transmitter and receiver laser phase noises (each having linewidth ∆ν/2) are modeled as a
Wiener process.
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Temporal resolution of the simulation is T ′ = Ts/8 which is also used in generating the Wiener
process. In the coherent receiver, the received signal is first filtered by a filter matched to the
transmitted pulse shape and then sampled at 2 (T = Ts/2). This is followed by the CD
compensation which is performed using the filter in Eq. (4) ; filter length varies as a function
of fiber length examined.

After CD compensation, carrier phase recovery is performed per one of the three methods
discussed previously. In the DD case, data modulation is first removed using perfect knowledge
of the transmitted symbols. Next the signal is filtered to remove noise using an 11-tap moving
average filter. The ideal DD provides an upper-bound of performance that can be achieved
by any CPE.

The VV case has data modulation removed by raising to the appropriate power (2 for BPSK,
4 for QPSK, etc.). The phase is then unwrapped (exploiting the differential encoding) and
filtered for noise using the same 11-tap moving average filter for the DD case. Finally, in the
PT case no CPE is used, the phase estimate is simply φR(t) + φT (t) using perfect knowledge
of the laser phase noise at transmitter and receiver.

1.4.2 Accuracy of semi-analytical PDFs

Two dimensional PDFs of the decision statistic f(yk) are estimated using MC simulation
(assuming ideal DD as the CPE) and calculated semi-analytically for the DD and PT cases.
MC estimates of the PDF are obtained by transmitting 5×106 symbols. In order to calculate
the semi-analytical PDFs, 50 symbol patterns X chosen randomly are used in Eq. (1.8) for
each of the four possible symbols xk to calculate f(yk|xk).

The estimated PDF and the semi-analytical PDF using DD are both circularly-shaped while
the PDF in [9] is ellipticity-shaped ; the tails of each elliptic constellation points extends
toward the decision boundary which explains why we will observe worse BER performance
for the PT case. The one-dimensional cross section of these PDFs at Im{ŷk} = 0 is shown in
Fig. 1.2(a).

The semi-analytical PDF in Eq. (1.8) can be calculated very fast as the number of patterns
required to get an accurate approximate for the true PDF is small. This is investigated in
Fig. 1.2 where the error in PDF is defined as

ε =
∫

yk∈S

|fMC(yk)− f(yk)|dyk (1.9)

where fMC(yk) stands for the PDFs obtained by MC. The integration is over entire complex
plane S. It can be observed from Fig. 1.2(b) that the error ε converges to an error floor very
fast by increasing the number of patterns.
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Figure 1.2 – (a) Cross section at Im{ŷk} = 0 of two-dimensional PDFs i) obtained by MC
simulation (solid), ii) as developed in Eq. (1.8) (dashed) and iii) as reported in [9] (dot-
dashed) ;L = 3000 km and ∆ν = 10 MHz, (b) error in PDF as a function of number of
patterns for averaging in Eq. (1.8) ; PDF plotted in (a) uses 50 patterns.

1.4.3 BER for three phase estimates

In this section, we compare BER estimates found with MC simulations and analytical expres-
sions. Semi-analytical BER is calculated for DD using the conditional PDFs f(yk|xk) by Eq.
(1.8). Each of the four conditional PDFs (two dimensional Gaussian PDFs) is calculated by
averaging over 50 random pattern vectors X, where the length of the vector corresponds to
system memory 2M . We use 50 patterns to find the sum in Eq. (1.8) as the total number of
patterns is excessively large - 42M−1 for the case of QPSK. We have confirmed via simulation
that this number is sufficient to obtain accurate results. The conditional PDFs are integrated
over QPSK decision regions (quarters of the complex plane) to find the symbol error rate
(SER). As the SER of a Gray-coded QPSK system is twice its BER, and this BER is half of
the BER of differential QPSK system, the calculated SER is equal to the BER of differential
QPSK. We have generated MC estimates of the BER of the differential QPSK system with
ideal DD.

We assume symbol rate of 28 Gbaud, L = 3000 km and total linewidth of ∆ν = 10 MHz
(5 MHz for LO and transmitter laser). In Fig. 1.3(a) we present BER versus signal-to-noise
ratio (SNR), including the AWGN case (an optically compensated with no EEPN) given by
the solid line. For the assumed parameters, the main source of SNR penalty (as compared with
AWGN case) is EEPN. The BER obtained from the semi-analytical PDF Eq. (1.8), where
Eq. (1.5) is used in the covariance matrix, is given in the dashed curve in red. The accuracy
of the semi-analytic result is confirmed by the MC BER given by the blue curve with square
markers. Having confirmed our semi-analytic BER result for ideal DD, we next examine the
utility of this result as a lower bound for the VV carrier recovery. An MC simulation of
BER for VV carrier recovery is shown in Fig. 1.3(a) with diamonds markers in green. The
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Figure 1.3 – BER versus (a) SNR (b) fiber length L (c) linewidth-symbol time product ∆νTs
(d) SNR for different baud rates from MC simulation (markers) and semi-analytical PDFs
(dashed). Baud rate in (a)-(c) is 28 Gbaud.

non-ideal modulation removal of the VV technique leads to a clearly visible penalty. Finally,
we reproduce the BER found in [63] by integrating the two dimensional PDF in [9] over
the decision boundaries. This semi-analytical BER, shown in black triangles, assumed a pilot
tone (PT) provided the true total phase noise at the receiver input that was then used for
derotating the symbol after CD compensation. Note that the PT results allowed an analytical
attack leading to the following simple expression (plotted in the black dashed curve) that
closely matched the semi-analytical PT BER results

BER = 2Q
(
1/
√
σ2
n + σ2

eepn

)
(1.10)

where σ2
eepn = π2L∆νLORs, Q(·) is the Q-function and signal power is normalized to one.

The factor of two accounts for differential detection. Despite the perfect side information, the
BER found (either analytical or semi-analytical) is not a bound, and is in fact a pessimistic
predictor of VV performance. This is due to the highly non-optimal strategy of derotating
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the received symbols with this side information.

We next fix the SNR to 15 dB and examine the impact of other system parameters on BER :
BER versus fiber length, linewidth and baud rate are shown in Figs. 1.3(b)-(d), respectively.
In Figs. 1.3(b)-(c), where a fixed baud rate of 28 Gbaud is assumed, a good match between
our semi-analytical predication and MC validation is evident. In addition, changing the baud
rate in Fig. 1.3(d) does not affect accuracy of the results. The prediction provides a lower
bound for VV performance over the range of values considered.

We use the semi-analytical BER to calculate the penalty in SNR at BER of 3.8 × 10−3 and
compare it with the penalty obtained by MC simulation. The penalty is measured with respect
to the system having just additive Gaussian noise whose theoretical BER is known. The result
is shown in Fig. 1.4 for different fiber lengths and laser linewidths.

It can be observed from Fig. 1.3 that our semi-analytical BER is a lower bound for the
BER of the VV carrier recovery so it can be useful in practice to estimate a lower bound
for the required SNR, minimum LO laser linewidth and system reach in presence of EEPN.
In addition, having a closed-form expression for conditional PDFs, gives more insight into
the stochastic properties of the decision statistic that can be exploited in taking measures to
reduce EEPN impact, for example, via employing soft decision FEC.
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1.5 Extension to QAM

The derivation of the analytical expression for φ̂k in Eq. (1.3) is presented in section 1.7
(Appendix 1) for the case of M -PSK signaling. The constant amplitude of M -PSK signaling
was exploited in the derivation. While 16-QAM and 64-QAM are not constant amplitude,
we nonetheless examined via simulation the accuracy of Eq. (1.3) for these cases over the
parameter ranges on interest. We ran two separate MC simulations. In one case the CPE
estimate φ̂k was generated with ideal DD remodulation followed by a moving average filter of
the unwrapped phase. In the second case the MC values for phase noise and AWGN were used
in Eq. (1.3) to produce the CPE estimate φ̂k. While not presented here, the BER predictions
of these two simulations were very close for a wide range of system parameters in the case of
both 16 and 64-QAM.

Having verified the accuracy of Eq. (1.3) by simulation for QAMmodulation, we adopt this ex-
pression and follow the same derivation for the conditional PDFs. Note that the constant am-
plitude of QPSK was not needed in deriving Eq. (1.7). The mean vectors [Re{x[k]}, Im{x[k]}]tr

and the covariance matrix depending on Eq. (1.5) are calculated for 16-QAM symbols to pro-
duce the Gaussian PDFs f(yk|X). The analytical PDFs are integrated to find the BER.

We again assume symbol rate of 28 Gbaud, L = 3000 km and total linewidth of total linewidth
of 2 MHz (1 MHz for LO or transmitter laser). In Fig. 1.5(a) we present BER versus SNR,
including the AWGN case. The dashed curve is the BER from semi-analytical PDFs, which
shows a good prediction of the BER by MC simulation (square markers). Again the SNR
penalty compared with the AWGN curve is mainly due to EEPN here. Accuracy of the
semi-analytical BER is verified versus fiber length and linewidth in Figs. 1.5(b)-(c). An SNR
of 20 dB is used for the 16-QAM system. A good match between theory and simulation
can be observed at large distances or linewidth, however, there is deviation from theory in
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small distances or narrow linewidth at this SNR. Future investigations should examine the
applicability of these equations for a lower bound for realistic carrier recovery techniques for
QAM.

1.6 Conclusion

Interaction of dispersion and phase noise in coherent systems is studied analytically in presence
of CPE. Based on this analysis, a more realistic model for the CPE in terms of transmitter
and receiver phase noise is proposed. Based on this CPE model, an analytical PDF of decision
statistic previously studied in the literature is improved. It is shown than the BER prediction
of previously presented PDF is pessimistic. The analysis is validated by MC simulations for
a QPSK system using ideal DD CPE and it is shown that our model predicts well the system
BER employing this ideal CPE. It is shown by simulation that the proposed semi-analytical
BER can be served as a lower bound for the BER by using VV carrier recovery. It is also
shown that the proposed model can be extended to the QAM and it provides fairly accurate
prediction of the BER in the case of 16-QAM employing ideal DD. However, accuracy of our
semi-analytical BER to estimate BER for other carrier recovery techniques should be studied
further.

Using the CPE model, the link between the LO phase noise and the estimated phase by the
CPE can be mathematically described. We are currently working to exploit this link to devise
algorithms that compensate EEPN in the system. On the other hand, the analytical PDF of
decision statistic is useful in practice when maximum-likelihood sequence estimation (MLSE)
algorithms or soft decision FEC are employed to reduce EEPN impact. In addition, prediction
of the system penalty without resorting to MC simulations could be of interest in the system
design where connection between this penalty and dispersion, linewidth and electrical filter
bandwidth needs to be determined.

1.7 Appendix 1

We consider an M-PSK signal for which |xi| = 1 and assume that the transmitter phase noise
is zero. The output of the CD filter is given by

rk =
N∑

n=−N
wn

∞∑
i=−∞

xipd [(k − n)T − iTs]ejφR[(k−n)T ] + nk (1.11)

where Ts and T are symbol and sampling time respectively and pd(t) = p(t)⊗hCD(t)⊗hoe(t)
(⊗ being convolution). We assume the CD compensating filter {wn} perfectly compensates
the chromatic dispersion, i.e.,

N∑
n=−N

wn

∞∑
i=−∞

xipd [(k − n)T − iTs] = x[k] (1.12)

31



where [k] gives the index of the desired symbol at the kth sample. Under this assumption, the
output of the CD compensating filter is

rk = x[k] (1 + qk) ejφR(kT ) + nk (1.13)

where

qk =
N∑

n=−N
wn
(
ej∆n,k − 1

) ∞∑
i=−∞

xi
x[k]

pd [(k − n)T − iTs] (1.14)

and where we define
∆n,k = φR(kT − nT )− φR(kT ) (1.15)

to be the phase increment in the receiver LO phase noise for the kth sample at the nth filter tap
in the CD compensating filter. Consider the product wn

(
ej∆n,k − 1

)
. For small n the phase

increment is small and we use the small angle approximation wn
(
ej∆n,k − 1

)
≈ j∆n,kwn ; for

larger n the coefficient wn is decaying exponentially and the product will be close to zero.
Hence

qk ≈
N∑

n=−N
j∆n,kwn

∞∑
i=−∞

xi
x[k]

pd [(k − n)T − iTs] (1.16)

We assume the filter output rk is ideally remodulated, removing x[k]. We further assume that
the phase noise φR(kT ) is nearly constant within the block length 2NB + 1 of the moving
average filter, to obtain

1
2NB+1

k+NB∑
m=k−NB

rmx
∗
[m] ≈

1
2NB+1e

jφR(kT )∑
m
qm

+ejφR(kT ) + ñ′′k

(1.17)

where ñ′′k is proportional to n′′k in Eq. (1.3) due to ASE noise. The sum over qm can be written
as ∑

m
qm = j

∑
m

∑
n

∆n,kwnpd (−nT )+∑
m,n,xi 6=x[m]

xi
x[m]

j∆n,kwnpd [(m− n)T − iTs]
(1.18)

The first term over m becomes multiplication by the number of taps of the moving average
filter 2NB + 1. Drawing on our assumption that the block length is chosen such that phase
noise φR(kT ) is nearly constant over the moving average, we approximate the phase increments
(relative to the nth CD filter tap timing) to also remain unchanged, ∆n,m ≈ ∆n,k, hence we
use ∆n,k in the summations.

The second term in Eq. (1.18) isolates the ISI contribution. We call this term ñ′k as it is
proportional to the noise n′k in Eq. (1.3). This summation is characterized by terms with
random phase changes due to ISI that add incoherently. This zero mean term adds to the
noise, which will be approximated as Gaussian and lumped with other noise at the output of
the moving average filter. We now have∑

m

qm ≈ (2NB + 1)
∑
n

j∆n,kwnpd (−nT ) (1.19)
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and the output of the moving average filter is

ejφR(kT )
{

1 + 1 +
∑
n
j∆n,kwnpd(−nT )

}
+ ñ′k + ñ′′k (1.20)

Taking the argument of the moving average filter output to get our phase estimate φ̂k, we
have

φ̂k ≈ φR(kT ) + Arg
{

1 +
∑
n

j∆n,kwnpd(−nT )
}

+ n′k + n′′k (1.21)

Consider the summation. The phase increment ∆n,k is small for small index n since the phase
holds constant over 2NB samples. As the tap index n grows, so does the phase increment,
however, the filter coefficients {wn} decay exponentially. Therefore the sum is small compared
to one and we can use the approximation Arg {1 + h} ≈ Im{h}.

φ̂k ≈ φR(kT ) +
∑
n

∆n,kRe {wnpd(−nT )}+ n′k + n′′k (1.22)

θk =
∑

m,n,i 6=[m]
∆n,kRe

xi
x[m]

wnpd [(m− n)T − iTs] (1.23)

using arguments similar to those just presented.

Finally, this analysis assumed zero transmitter phase to simplify our derivation. As we have
a linear system, and we have assumed the CD compensating filter exactly compensated the
chromatic dispersion, we can use the superposition principle to include the transmitter phase
noise and the ISI phase contribution to conclude

φ̂k ≈ φR(kT ) + φT (kT ) + θk +
∑
n

∆n,kRe {wnpd(−nT )}+ n′k + n′′k (1.24)

1.8 Appendix 2

The decision statistic yk is the result of derotating the output of the CD compensating filter
by φ̂k. From Eq. (1.11), yk = rke

−jφ̂k is

yk =
∑
n

wn
∑
i

xipd [(k − n)T − iTs]ejφR((k−n)T )e−jφ̂k + nk (1.25)

Using Eq. (1.24) with zero transmitter phase noise, φT = 0,

yk =
∑
n
wn
∑
i
xipd [(k − n)T − iTs]

ej∆n,k · e−jRe
∑

l
wlpd(−lT )∆l,k + ñk

(1.26)

where we lump noise from φ̂k into a new additive noise term. We can write the exponentials
in Eq. (1.26) as

ej∆n,k
∏
l
e−j∆l,kRe{wlpd(−lT )}

≈ (1 + j∆n,k)
∏
l

(1− j∆l,kRe {wlpd(−lT )})

≈ 1 + j∆n,k −
∑
l
j∆l,kRe {wlpd(−lT )}

(1.27)

33



where we used the small angle approximation and only kept terms of first order in the product.
Thus we have

yk =
(

1−
∑
l
j∆l,kRe {wlpd(−lT )}

)
·
∑
n
wn
∑
i
xipd [(k − n)T − iTs]

+
∑
n
j∆n,kwn

∑
i
xipd [(k − n)T − iTs] + ñk

≈ x[k] − x[k]
∑
l
j∆l,kRe {wlpd(−lT )}

+
∑
n
j∆n,kwn

∑
i
xipd [(k − n)T − iTs] + ñk

(1.28)

using Eq. (1.12). Defining

sn,k = j
∑
i

xiwnpd [(k − n)T − iTs]− jx[k]Re {wnpd(−nT )} (1.29)

we can write
yk = x[k] +

∑
n

∆n,ksn,k + ñk (1.30)

where ñk is the cumulative noise in the estimation process with variance σ̃2.

The conditional PDF f(yk|X) is a complex Gaussian PDF with mean vector [Re{x[k]}, Im{x[k]}]tr

and a 2×2 covariance matrix C depending on sn,k and σ̃2 and σ2 = 2π∆νLO. To find elements
of this matrix, we consider real and imaginary parts of the right hand side of Eq. (1.7). The
diagonal elements of C correspond to the variance of real and imaginary parts (each being a
sum of iid Gaussian random variables, the variance is the sum of variances). The off-diagonal
elements of C correspond to the covariances of the real and imaginary parts, which can be
easily simplified using the fact that many terms in the covariance are products of independent
random variables with zero mean. This matrix is the same as that in [9], however using Eq.
(1.5) for sn,k. We repeat the equations for the covariance matrix here for completeness.

C = σ2
[
c11 + σ̃2/σ2 c12

c21 c22 + σ̃2/σ2

]
(1.31)

where

c11 =
−1∑

i=−N

 i∑
n=−N

Re{sn,k}

2

+
N∑
i=1

(
N∑
n=i

Re{sn,k}
)2

, (1.32)

c22 =
−1∑

i=−N

 i∑
n=−N

Im{sn,k}

2

+
N∑
i=1

(
N∑
n=i

Im{sn,k}
)2

, (1.33)

c12 = c21 =
−1∑

i=−N

(
i∑

n=−N
Re{sn,k}

i∑
n=−N

Im{sn,k}
)

+

N∑
i=1

(
N∑
n=i

Re{sn,k}
N∑
n=i

Im{sn,k}
) (1.34)
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Chapitre 2

Multi-level coded modulation in
presence of phase noise

2.1 Introduction

While capacity can be pushed by leveraging constellation size and coding complexity indepen-
dently, in practice there is always a compromise between the two. Coded modulation (CM)
techniques promise more flexibility in efficient use of constellation size and coding strategy.
A plethora of CM techniques exist in the literature [32, 8, 68, 33], however, application to
the fiber-optic channel requires modifications as most existing techniques are developed for an
AWGN or fading channel (suitable for wireline, wireless and satellite communications). Fiber-
optic systems include chromatic dispersion, nonlinearity and relatively high levels of phase
noise, often violating the AWGN assumption. In addition, due to the high speed of optical
coherent systems today, CM complexity should be moderate, and implementation practical.

TCM is a classic example of CM studied for fiber-optic systems [40, 44, 42, 46, 43, 36, 38].
The channel is typically assumed to be AWGN, which may not be valid in practice. Even
in short reach systems with negligible chromatic dispersion and nonlinearity, phase noise can
substantially affect large constellations, like 16-QAM. The impact of phase noise on TCM for
coherent polarization shift keying (POLSK) system was studied in [40]. However, the impact
of phase noise on coded modulation systems for coherent systems is not studied thoroughly.

Block coded and BICM are other CM techniques studied well for optical communications
[39, 69, 70, 71, 72]. Specifically, the use of low density parity check codes (LDPC) codes
along with soft iterative decoding is studied extensively in [69, 70, 73]. Although BICM has
a simple encoder, the decoding complexity can be quite high and may not be practical for
very high baud rate. BICM performance strongly depends on the mapping of bits to symbols.
The optimal mapping varies with system parameters like SNR, desired BER and number of
iterations in the decoder [39], and may be difficult to find for constellations without strong

35



symmetry.

Another CM technique known as MLCM has received less attention in optical communica-
tions. MLCM is a special case of generalized-LDPC (GLDPC) codes [74]. GLDPC codes are
studied in [75] for optical coherent detection. However, no systematic mapping and rate op-
timization is used. Application of MLCM to a coherent system with nonlinear phase noise
is studied in [11]. A heuristic set-partitioning is introduced in [11] and the code rates of RS
component codes are optimized to find minimum BLER. While latency and error propagation
can cause a problem in multi-stage decoders (MSDs) for MLCM, in [41] staircase component
codes and independent decoding of each code can eliminate these concerns. For achieving high
coding gain in [41], it is essential to use a Gray mapping of bits to symbols, which may not
be feasible for an arbitrary constellation lacking strong symmetry, such as the phase noise
optimized constellations in [10].

MLCM using RS component codes and hard decision MSD is studied in this chapter as a
coding strategy for optical coherent systems. The choice of RS encoders and hard decision
MSD enables a low complexity coding scheme. To this end, we concentrate in this chapter
on RS codes with small code length and keep the total code rate high. This is in contrast
with most of the GLDPC proposals for optical communication [74] which use component
codes with large code length. We present a numerical method to 1) systemically find a set-
partitioning for any constellation (even those lacking symmetry) and 2) optimize code rates
for that set-partition. Our method exploits the conditional PDF of received symbols ; the PDF
takes into account channel effects, while we manipulate that PDF to capture the impact of
constellation geometry. Although our method is independent of the number of constellation
points, we focus in this chapter on 16-QAM. There are a number of reasons for this choice :
1) 16-QAM provides a good compromise between spectral efficiency and performance [76],
2) our set-partitioning and rate optimization method is very fast for 16-QAM, while it may
become too slow for constellations having more points, and 3) the latency incurred by MSD
grows with constellation size.

This chapter is organized as follows. We first present our first contribution, which is the
methods for 1) set-partitioning and 2) rate optimization, in section 2.2. BLER performance
is investigated using semi-analytical techniques in section 2.3 for two scenarios : A) a system
limited by amplifier induced nonlinear phase noise and B) a system limited by Wiener phase
noise. Investigation of the first scenario is our second contribution where we consider a 16-
QAM ring constellation and compare our set-partitioning with another presented in [11] ;
optimized rate allocations are found for both set partitions. We show that our set-partitioning
leads to a rate allocation that improves BLER. Investigation of the second scenario is our
third contribution which is covered in sections 2.3 and 2.4. In these sections, we consider
two constellations for 16-QAM : 1) a square constellation and 2) a phase-noise optimized
constellation introduced in [10]. The BLER is greatly improved [77] using the constellation
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from [10] with our set partition and rate optimization. We present Monte Carlo simulations
of BER for the phase noise limited system of section 2.3. We implement both MLCM encoder
and MSD. Our fourth and fifth contributions are also presented in section 2.4. We show
that the set-partitioning and code rates that minimized BLER lead to the minimization of
BER for ranges of SNR that are of practical interest. Low SNRs violate the assumption
of zero error propagation in the BLER equations, and hence BER is suboptimal in these
regions. We compare SNR advantage of the MLCM system with uniform rate system for both
constellations and show that large SNR gains can be achieved at low BER, even if the set
partition and rate allocation is suboptimal. The SNR advantage is examined for different
levels of phase noise, and we find that our MLCM strategy leads to BER curves with the
same improvement trends as symbol error rate (SER), validating an effective set-partitioning.

2.2 MLCM system design

The components of an MLCM system are first described, and then the method for designing
the MLCM system is described in subsections.
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2.2.1 MLCM encoder and MSD

In an MLCM encoder, a unique code rate Rm is found for each bit stream used to form
symbols. For 16-QAM, the disparate code rates are implemented as illustrated in Fig. 2.1.
At the encoder side, KRS bits of information are demultiplexed into four blocks of (distinct)
length Km in the mth encoder, and then encoded into four equal length blocks of N bits. In
general, it is not necessary to have equal length output blocks of encoded bits, but we make this
assumption for simplicity of the analysis. For a given total code rate R = KRS/4NRS , equal
to the sum of component code rates Rm = Km/KRS , we optimize the vector of component
code rates [R1R2R3R4]t.

A set-partitioning rule maps each four bit output symbol into a constellation point ; N 4-bit
symbols per block are output by the encoder. According to the set-partitioning, the first bit
(in the block of k1 bits or layer 1) determines into which of two sets (each with 8 members)
the symbol will fall. The second bit determines which one of the two subsets (each with 4
members) the symbol falls into, and so on. Each set-partition would require an optimized
vector of component codes.

At the decoder side, the hard-decision MSD (HD-MSD) is composed of four RS decoders, one
for each layer of set-partitioning. Decision regions are established so that the selected symbol
has the smallest Euclidean distance from the received signal ; this leads to rectangular regions
for square 16-QAM and more complex regions for the phase-optimized constellation. From the
hard symbol decisions we extract all first position bits in the symbols to form a new sequence
of layer-one bits. This sequence is input to the first decoder. The layer 1 decoder output is
passed to layer 2. The decoded first bit determines the layer 2 subset of eight constellation
points (see Fig. 2.2) that becomes the constellation used to make a new symbol decision. Once
again the symbol with shortest Euclidean distance to the received signal is selected and now
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the sequence of second bits is sent to the layer-three decoder. This procedure is repeated for
the third and fourth layers until the decoding is finished. In this way, possible errors in the
encoded bits of an upper stage can be corrected up to the capacity of the upper RS code
and a more reliable symbol decision can be made in the lower stage. A drawback of MSD is
error propagation which means that decoding failure of a certain stage is propagated to the
succeeding stages and increases the number of errors drastically. Although some methods are
proposed to reduce impact of error propagation [78], these methods add complexity to the
system.

It can be shown that using component codes whose rates are equal to the capacity of the
layer are sufficient for the MSD to approach capacity [68]. The capacity of each layer equals
the mutual information between the received symbol (a complex value) and the bit of a
certain layer conditioned and averaged over bits in previous layers [68]. Although there are
some techniques to reduce error propagation, they are either not very effective or costly [68].
Here our strategy to prevent excessive error propagation applies stronger codes at the top
layers (first and second layers) and a set-partitioning devised for this strategy. In the set-
partitioning and rate optimization method that we present in the next sections, we assign
most of the allocated overhead of the FEC to the first and second layers.

2.2.2 Set-partitioning method

Set-partitioning determines the mapping of symbols to constellation points in the MLCM
system. In order to approach capacity, it is not essential to use set-partitioning if there is no
constraint on the component code lengths. Constraints are, however, inescapable in optical
systems at high baud rate. Therefore, we consider RS codes with a fixed code length of 255
RS symbols. For this case of finite code length, set-partitioning promises the best performance
[68].

Ungerboeck proposed maximizing Euclidian distance using a set-partitioning where the mi-
nimum distance between symbols in each set (i.e. intra-set minimum Euclidean distance)
increases monotonically at each layer [8]. In an AWGN channel, maximizing Euclidean dis-
tance minimizes SER. We deal with a channel which is not AWGN, and therefore work with
SER directly rather than Euclidean distance. Extension of the Ungerboeck set partitioning to
irregular constellations is not straightforward. We adopt a heuristic approach that minimizes
intra-set SER, thus guaranteeing that at each layer the conditional SER (SER provided there
is no error in previous layers) decreases. For AWGN channel and square 16-QAM, our me-
thod yields the Ungerboeck set partitioning ; thus our extension to irregular geometries and
non-AWGN channels is consistent with classic partitions.

When combined with MLCM, this leads to an optimal code rate vector whose elements are
decreasing. This is advantageous as 1) it facilitates finding the optimal code vector (less prone
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to local minima) and 2) it leads to lower layers requiring weak codes (so weak that coding
can be foregone to reduce complexity with little overall performance hit).

In order to calculate intra-set SER of candidate sets, we examine the conditional PDF
f(x, y|si) of received symbol x + jy given that symbol si is transmitted (i = 1, ...,M). First
we calculate the error probability pij that transmitted symbol si is received as symbol sj
(i, j = 1, ...,M and i 6= j). These probabilities are found by numerically integrating f(x, y|si)
over the decision region for symbol sj . The probabilities pij form a M ×M matrix whose
diagonal elements are zero (pii = 0).

We partition the M point constellation into two sets, S(l) and its complement Sc(l), each
having M/2 elements. We denote the set of all possible partitions as F . For the lth partition,
the intra-set probability of symbol error for set S(l) is

pSER(l) =
∑

xi∈S(l)

∑
xj∈S(l)

pij (2.1)

found by summing the elements of the matrix [pij ] whose row and column indexes correspond
to symbols in the set S(l). We calculate a similiar error probability for set Sc(l) and denote it
as P c

SER
(l). We define the optimal partition S(lopt) to be that which minimizes the maximum

of these two probabilities over all the members S(l) of F , i.e. the minimax probability.

PSER(lopt) = min
S(l)∈F

{
max[PSER(l), P c

SER
(l)]
}

(2.2)

In this way, we choose a pair of sets for the first layer whose maximum of intra-set SER is
minimized. Recall that in an irregular constellation, intra-set SER will not be identical in
the two subsets forming the partition. Performance will be dominated by the subset with the
largest SER, hence this is the effective SER for the partition and it should be minimized.
For subsequent layers, we start with each set in the preceding layer and apply the same
methodology. That is, all partitions of that set are examined to find the minimax partition. We
proceed until only sets with two elements remain (assumingM is a power of 2). As illustrated
in Fig. 2.3 each splitting of a set into a partition is assigned to a bit, thus establishing the
mapping of bits to constellation points (or equivalently symbols to constellation points). For
AWGN channel and square 16-QAM, this method yields the Ungerboeck set partitioning.

In the set-partitioning algorithm described, finding the first pair of sets needs a search over
M choose M/2 partitions. The number of partitions grows quickly with M , but for M = 16
the number of partitions (12870) is reasonable for a brute-force search. A typical result of
set-partitioning for a phase noise optimized 16-QAM is shown in Fig. 2.3. A combination of
SNR and phase noise determines the final set-partitioning.
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2.2.3 Code rate optimization method

In this section, we describe a simple code rate optimization strategy. We propose the use of
RS coding for each of the layers in the set partition, as illustrated in Fig. 2.1. We seek the
vector of code rates [R1R2R3R4]t that minimizes the BER, subject to a constraint on the total
code rate (sum over component code rates). An analytical expression for BER is intractable,
so we instead find the vector minimizing the block error rate BLER.

Let pb(m) be the probability of bit error for layer m, assuming no bit error was made in
any previous layer. This probability can be estimated by Monte Carlo (MC) simulation, or
calculated numerically from the final set partition and the matrix of pij (the probability of
choosing symbol j when symbol i was transmitted). In this chapter, we use the latter approach
and calculate pb(m) by following equation

pb(m) = 1
M

 ∑
xi∈S0(m)

∑
xj∈S1(m)

pij +
∑

xi∈S1(m)

∑
xj∈S0(m)

pij

 (2.3)

where S0(m) and S1(m) are sets of symbols corresponding to bits 0 and 1 at layer m respec-
tively.

The probability that a block of K bits, see Fig. 2.1, contains an error is the block error rate
(BLER). The BLER for RS component codes can be approximated using the union bound to
be [11].

BLER ≈
4∑

m=1

n∑
i=tm+1

(
n

i

)
pis(m)(1− ps(m))n−i

≈
4∑

m=1

n∑
i=tm+1

(
n

i

)
8ipib(m)(1− 8pb(m))n−i

(2.4)

where n is the number of output symbols in an RS code with error correction capacity of
tm = bn(1−Rm)/2c and ps is the RS symbol error rate and pb its corresponding BER. As
pb(m) assumes no error in previous layers, the BLER estimate is optimistic. Although (4) is
approximate and deviates at low SNR from true BLER, optimization of code rates is usually
performed in a region where BLER is small enough for very low post FEC BER. In these
regions, (4) is accurate.

As our minimax set partition strategy yields layers with decreasing symbol error rates, we
can assume that R1 < R2 < R3 < R4 will give best overall performance. This method is
applicable to constellations of arbitrary size, however, we use a brute-force search to find the
optimal code rate vector for 16-QAM which could become too slow for larger constellations.
Candidate vectors are used to evaluate BLER in (2.4) ; we choose the set of code rates which
minimizes the BLER. The code vector varies with system parameters such as SNR, phase
noise or nonlinearity. The brute-force search can be improved by tweaking a few parameters
to reduce the search space. The tweaking parameters must also be adjusted accordingly.
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Figure 2.4 – (a) Optimized code rates vs. power for set-partition in [11] (b) BLER vs. power
for our set-partition (squares) and set-partition in [11] (circles) (c) optimized code rates vs.
power for our set-partition (d) uncoded BER vs. input power of layers 1 and 3 for two different
set-partitions.

The complexity of the brute-force search can be reduced by compromising between computa-
tional complexity and accuracy of the optimal code rates. For example, a minimum code rate
in the system can be set. The number of points searched will fall between the minimum code
rate and one, and can be reduced by reducing the desired code rate resolution. In addition,
other constraint optimization methods can be employed for large constellations [79].

2.3 Investigation of BLER improvement

In the following sections we consider three 16-QAM constellations. We first consider a ring
constellation for a nonlinear phase noise (NLPN) system. Next, we examine the square constel-
lation and a phase-noise optimized constellation with weak symmetry. For a given constella-
tion, the set partition is critical to keeping BER low for a given symbol error rate performance.
In this section we use BLER as an indicator of BER performance ; BLER can be found with
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semi-analytical techniques. In section 4 we will use Monte Carlo techniques to find BER per-
formance and validate our assumption that optimizing BLER leads to optimization of BER
for reasonable regions of signal to noise ratio.

An ad hoc set partition applicable to ring constellation in an NLPN channel was found in
[11] ; we show in section 2.4 that our numerical technique for set partitioning leads to lower
BLER. In [10] the SER performance of the phase-noise optimized constellation was shown to
be superior to square 16-QAM, but the relationship between SER and BER for the optimized
constellation was not examined. For a constellation with such weak symmetry, no Gray-coding
can be applied. We show that combining set partitioning and rate optimization significantly
improves BLER performance for the phase-noise optimized constellation.

2.3.1 Nonlinear phase noise limited system

In this section we apply our set-partitioning and rate optimization strategy to a coherent
detection system affected by nonlinear phase noise (NLPN). A 16-QAM ring constellation
is employed in [11] for NLPN, and a set-partitioning method is proposed where radial and
angular set-partitioning are done separately ; an MLCM system with optimized RS component
codes is used. A nonlinear post compensator for NLPN introduced in [80] is employed at the
receiver.

The PDF of received symbols after NLPN compensation can be derived analytically if chro-
matic dispersion is ignored [80]. We use this PDF to calculate error probabilities pij and
find set-partitioning and optimal code rates using the methods described in section 2. Our
simulations used the system parameters from [11] : fiber length of 5000 km, baud rate of 42.7
Gbaud and total code rate of 0.929. We also recreated results from [11] using their published
set-partition and a numerical search for the best rate allocation. Fig. 2.4a gives our recreation
of the optimal code rates for the set-partition of [11], in close agreement with Fig. 6 of [11].

In Fig. 2.4b we present the optimized BLERs for the two set-partitions. The optimized BLER
from the ad hoc radial/angular set-partition in [11] (red circles) is significantly worse than
BLER using our minimax set-partition strategy (blue squares). MLCM is clearly more effective
when combined with a methodical set-partition strategy exploiting knowledge of channel
characteristics (probabilities pij). The optimal code rates for our set-partitioning are shown
in Fig. 2.4c.

As expected, our set partition strategy leads to coding rates that decrease from lower (R4)
to upper (R1) layers, as opposed to the variable nature of rates in Fig. 2.4a. The clumping
of rates close to one for the first three layers in Fig. 2.4c for a wide range of input powers
could be exploited to reduce complexity of the MLCM encoder, a side benefit of the minimax
set partition strategy. In contrast, only the first layer (see Fig. 2.4a) has this property for
the set-partition in [11]. In Fig. 2.4d we present pb(m), the BER of layer m (m = 1 and 3)
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assuming no bit error in previous layers. We see that the set partition of [11] does not have
the property of decreasing pb(m) with increasing m.

For the NLPN channel we have assumed the use of a post-compensation algorithm. The set
partitioning proposed offers improved performance, but at the cost of an increase in receiver
complexity in order to implement the nonlinear post-compensator. The NLPN post- compen-
sation algorithm requires an estimate of the symbol amplitude. This amplitude estimate is
obtained in [11] from the detection algorithm where set-partitioning is naturally divided into
two steps – one slicing for amplitude, and another slicing for phase. In our set partition the
detection slicing is similar to a square 16-QAM constellation where both amplitude and phase
must be taken together to select the most likely symbol.

In [11] the set-partition leads to a detection algorithm as follows : 1) amplitude selection/estimation,
2) calculation and application of NLPN post-compensation, and 3) phase selection. In the case
of our set-partition, the detection would be : 1) selection of most likely symbol (with phase
likely in error due to NLPN), 2) amplitude of selected symbol used to calculate and apply
NLPN post-compensation, and 3) re-selection of most likely symbol (with NLPN compen-
sated). Note that both in [11] and in our analysis of BLER, we assume that the estimation
process provides perfect estimates of the received amplitude, so both approaches offer lower
bounds for BLER. The bound in [11] is arguably tighter, as amplitude can be decoded be-
fore phase, but the enhanced performance of the new set partition could be approached by
introducing an explicit amplitude estimation algorithm (increasing receiver latency and/or
complexity).

2.3.2 Phase noise limited system

We consider in this section a coherent system with both AWGN and phase noise, which
is ultimately limited by Wiener phase noise. This arises, for instance, for a short reach or
metro area system where the impact of amplifier induced nonlinear phase noise is small and
chromatic dispersion is compensated. We consider two 16-QAM constellations : 1) square and
2) a phase noise optimized constellation introduced in [10]. For the channel considered, the
PDF of received sample x+ jy for a given transmitted symbol a+ jb is given by [81]

f(x, y|a, b) =

1√
2ππσ2σθ

∫ π
−π e

−
{

(x−a cos θ+b sin θ)2

σ2 + (y−b cos θ−a sin θ)2

σ2 + θ2
2σ2
θ

}
dθ

(2.5)

where σ2 and σ2
θ are the noise variance of ASE and phase error respectively. For a given average

SNR over the complete constellation, SNR = 1/σ2, and a, b are normalized to give unitary
average signal power. Phase error variance is a function of the phase noise level (quantified by
the bandwidth-linewidth product ∆νTs) and the phase tracking algorithm employed. Phase
error variance must be found numerically using either simulated or experimental data. In
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this chapter we use a decision-directed, moving-average algorithm for carrier recovery and
use numerical simulation to estimate σ2

θ for a given ∆νTs. We use (2.5) to calculate error
probabilities pij for (2.4).

The SER of the optimized [10] and square 16-QAM constellations are compared in Fig. 2.5a,
reproducing the result in [10] for ∆νTs = 5× 10−4. The optimized constellation shows much
better SER performance in the presence of large phase noise as compared to square 16-QAM.
While Gray-coding can be applied to square 16-QAM, it is not compatible with the optimized
constellation ; hence the relationship between SER and BER for the optimized constellation
must be examined. We consider two approaches for the mapping of bits to 16-QAM symbols,
and the assignment of forward error correction. In the first simplistic approach we use a single
RS encoder and decoder. Gray coding for square 16-QAM and a Gray-inspired mapping (where
we attempt minimum bit changes for symbols in close proximity) are used. This mapping and
FEC would be appropriate for an AWGN channel. In the second approach an MLCM approach
is considered where the exact error probabilities are calculated from (2.1. The probabilities
are used to find the set-partition for the mapping of bits to symbols, as well as the optimal
code rates for that set-partition per the methodology presented in section 2.2.2.

BLERs shown in Fig. 2.5b were calculated via (2.4) for both square and optimized 16-QAM
constellations with either optimized (MLCM) or non-optimized (uniform rate) coding rates.
For a fixed coding strategy (flat rate or MLCM), the phase-noise-optimized constellation
(circles) performance equals or outperforms the square 16-QAM constellation (squares). The
Gray-inspired mapping (dashed curves), which calls for a flat rate FEC, cannot exploit the
probabilities of error that vary over bits in the QAM symbol, hence MLCM (the solid curves)
always offers better performance. Clearly MLCM with an appropriate set partitioning can
significantly enhance the use of a phase-noise-optimized constellation as seen in Fig. 2.5b. For
the optimized constellation, constituent code rates minimizing BLER are plotted versus SNR
in Fig. 2.5c for different layers.

Taking the non-Gaussian metric BLER, solid lines in Fig. 2.5b for ∆νTs = 5 × 10−4, we
vary the level of phase noise ∆νTs and compute the SNR advantage in using the phase-
noise-optimized 16-QAM constellation instead of the square constellation. The advantage for
several phase noise levels are presented in Fig. 2.5d versus BLER. For lower phase noise
there is no gain in using the optimized constellation ; this is not surprising as the optimized
constellation was developed assuming large residual phase offset. The phase error variance
σθ is a function of both laser linewidth and the phase estimation algorithm. The optimized
constellation offers robustness to this residual phase error, which can arise due to a wide
linewidth laser, or feedback delay in a parallelized DSP architecture. The SNR advantage
grows rapidly as phase error increases.

45



SNR (dB)

B
L

E
R

S
N

R
 a

d
v
a

n
ta

g
e

 (
d

B
)

(b)

SNR (dB)

C
o

n
s
ti
tu

e
n

t 
c
o

d
e

 r
a

te

(c)

Layer 1

16 17 18 19 20 21
10

-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

 

 

Optimized
Square

 

 

“Gray coded”

(d) -log10(BLER)

3 4 5 6 7 8 9 10
-2

-1

0

1

2

3

4

SNR (dB)

16 17 18 19 20 21
0.8

0.84

0.88

0.92

0.96

1

Layer 2

Layer 3

Layer 4

(a)

constellation

=0.034, Ts=10-3

=0.074, Ts=5× 10-4

=0.11, Ts=10-4
increasing phase error

non-Gaussian

MLCM FEC,

metric

Optimized

constellation,

MLCM FEC

S
E

R

16 17 18 19 20 21
10

-5

10
-4

10
-3

10
-2

10
-1

 

 

optimized

square 

Figure 2.5 – (a) SER vs. SNR for two constellations, (b) BLER vs. SNR after coding com-
paring MLCM system (solid) with flat rate (dashed) system, (c) constituent code rates mini-
mizing BLER for optimized 16-QAM constellation vs. SNR, (d) SNR advantage of optimized
over square 16-QAM constellation for three phase error levels. Results in (a)-(c) for ∆νTs =
5× 10−4.

2.4 Investigation of BER improvement

In this section, post FEC BER of the MLCM system is investigated using MC simulations.
Our aim is to investigate the accuracy of BLER as a figure of merit for designing MLCM
systems (based on the method presented in section 2.2.1) and verify BER improvement of
phase noise optimized versus square 16-QAM constellation, and MLCM versus uniform rate
coding.

BER simulations are performed in MATLABTM using RS encoders and HD-MSD. The MLCM
encoder consists of four RS(n,ki) encoders each having the same code length of n = 255 RS
symbols. The number of input bits ki for each RS encoder and mapping of bits to symbols
are set based on the optimal code rates and the set-partitioning found using the method in
section 2.2.2.

The BER versus SNR is shown in Fig. 2.6a for three different FEC systems applied to square
16-QAM. The solid and dotted curves represent an MLCM system where code rates of RS
encoders at each point of SNR are optimized using the method in section 2.2.1. The difference
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between solid and dotted curves is in the implementation of the MSD ; in the solid curve, the
error propagation in the MSD is disabled in the simulation by providing true encoded bits of
each decoder to the succeeding stages for decision (see Fig. 2.2 flow chart). We can observe
that although the impact of error propagation at low SNR is large, with increasing SNR the
two curves converge. It should be noticed that the BLER used for rate optimization is an
accurate measure of the MLCM system performance without error propagation (solid curve).
Nonetheless, the BER curve without error propagation is an unrealistic indicator of system
performance as the true encoded bits are unknown to the receiver. This BER curve is shown
here simply as a reference, to identify regions where this curve and the realistic BER curve
with error propagation converge, i.e., at high SNR. This convergence confirms the validity of
the BLER approximation for regions having low post-FEC BER. The dashed curve in Fig. 2.6a
shows BER of a uniform rate system having a single RS encoder and decoder with the same
total code rate as MLCM system. The advantage of the MLCM system over uniform rate one
at high SNR is visible in this figure. In Fig. 2.6b, SNR advantage of the MLCM system over
uniform rate system is shown for square and optimized constellations versus BER. It can be
observed from Fig. 2.6b that MLCM is superior to uniform rate system for both constellations
at low BER which is of practical interest. It should be noticed that although SNR advantage
of the optimized constellation in Fig. 2.6b is smaller than square one, its BER at high SNR
is smaller than square constellation for a fixed coding schema (MLCM or uniform rate).

BER simulation of the MLCM system for optimized constellation is shown in Fig. 2.7a for
different levels of phase noise. Again at each point, the set-partitioning and code rates are
found using the method in section 2.2.1 based on BLER minimization. In Fig. 2.6b, SNR
advantage of the MLCM system for optimized constellation over square 16-QAM is shown
for three levels of phase noise. It can be observed that the curves follow the same trend as
Fig. 2.5d for BLER ; for ∆νTs = 10−4, there is no advantage in using optimized constellation,
there is slight advantage at ∆νTs = 5 × 10−4 and this is increased at ∆νTs = 10−3. This
figure obtained for an MLCM system with error propagation, confirms that BLER can be
used as a measure for BER minimization even in a realistic MLCM system assuming error
propagation.

2.5 Discussion

In [82] independent low density parity check (LDPC) decoders are used, while we adopt a
multi-stage decoder (MSD) and design the system based on this assumption. We find the set-
partitioning and code rates in such a way to have decreasing code rates from top to bottom
layers. In this way, the decoders and encoders do not have the same complexity as in [82].
The reduced complexity of the encoders and decoders in our scheme can compensate the
complexity added by MSD.
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We cannot compare our results with [82] due to differences in codes, decoders and overhead
(overhead in [82] is ∼ 30% and in our work ∼ 7%). More generally, an issue in implementing
a soft decision SD-MLC to compare with our HD-MSD is finding an accurate equation for
BLER for rate optimization. Equation (4) used for BLER optimization is a tight bound, at
least at high SNR, for RS codes. However, the same equation may not be applicable to LDPC
codes and more research is needed to find an accurate equation for BLER.

In both [73] and our scheme, the PDF of the received symbols in the presence of phase noise
is exploited. This PDF is used in our scheme to find set-partition and code rates, and is used
in [73] to find log-likelihood ratios. Based on Fig. 2 in [73] and our Fig. 2.7 we can compare
the results. The LDPC code rate is 0.8 in [73] which is close to the rate 0.9373 in our thesis.
In addition, both in [73] and Fig. 2.7, we have curves for the same amount of phase noise ;
∆νTs = 10−3 and the same number of constellation points ; i.e. 16 points. In Fig. 2 of [73],
the OSNR for BER of 10−6 is 12.4 dB for OSCD constellation and 13.2 dB for square 16-
QAM. In Fig. 2.7a, the curve with triangle markers shows the BER for a 16-point optimized
constellation with ∆νTs = 10−3. At BER of 10−6, the SNR is around 17.4 dB, or OSNR
= 19.4 dB. 1 While we require around 5 dB more OSNR (comparing to OSCD in [73]), we
should note that the stronger FEC with more overhead is used in [73]. In addition, we should
note that systems and DSP may be different and optimal bit mapping is not used in [73]. The
examination of soft decision MSD in the context of constellation optimization in the presence
of phase noise is beyond the scope of this thesis and a question for future research, as is the
relative performance of LDPC and RS codes.

2.6 Conclusion

A numerical method was proposed for designing an MLCM system with RS component codes.
This method is based on known PDF of the channel and is applicable to both AWGN and
non-AWGN channels. The channel PDF is exploited to find a set-partitioning optimizing
a minimax criterion and a rate allocation minimizing BLER under the assumption of zero
error propagation. The method is particularly useful in application of MLCM to coherent
optical channels where large levels of phase noise could be present. We consider a 28 Gbaud
coherent system with a coding scheme of total overhead 7%. The total linewidth (LO and Tx)
is changed from 2.8 to 28 MHz.

Application of this method to three different constellations and two different channels was
studied. We first considered a ring constellation in a coherent system impaired by AWGN and
nonlinear phase noise and found optimal set-partitioning and code rates. We compared the
system BLER results with the BLER of previous work which used an ad-hoc set-partitioning
and showed large BLER improvement. We then considered square and a phase noise optimized

1. SNR is related to OSNR by OSNR = (Rs/2)/Bref ∗ SNR [83] ; Rs = 28 Gbaud being symbol rate and
Bref the reference bandwidth for the OSNR taken to be 12.5 GHz.
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Figure 2.6 – (a) Post-FEC BER of square constellation for MLCM system without error
propagation (solid), MLCM with error propagation (dotted) and uniform rate (dashed) (b)
SNR advantage of the MLCM system with error propagation over uniform rate system versus
post FEC BER for square (square markers) and optimized (circles) constellation. In all the
curves ∆νTs = 5× 10−4 and total rate is 0.9373.

16-QAM constellation in a coherent system impaired by AWGN and Wiener phase noise. We
compared BLER of the optimized and square 16-QAM constellations in an MLCM system
designed by our method.

Large improvement of BLER was observed for the optimized constellation in the regime of
the optimality of the constellation. We also compared BLER of the MLCM and uniform
rate systems (using RS code) and observed large SNR gains. In order to verify performance
of the designed MLCM system in realistic implementation, we performed MC simulations
using MLCM encoder and MSD in a coherent system. We studied BER with and without
error propagation in the MSD. The BER performance of the MLCM system without error
propagation is always better than that of uniform rate (with the same total rate) system.
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Figure 2.7 – (a) Post FEC BER of MLCM with error propagation for optimized constellation
(b) SNR advantage of optimized versus square constellation when MLCM system with error
propagation is used.

Although the BER performance of the MLCM system (with error propagation) at low SNR
is worse than that of uniform rate system due to large error propagation in MSD, at low
post FEC BER (where most of the practical systems operate) the MLCM system has an
advantage. At BER of 10−6 and ∆νTs = 5 ∗ 10−3, the SNR advantage of the optimized
and square 16-QAM over its uniform rate system is around 0.4 and 0.8 dB respectively. In
our designed MLCM system, optimized constellation has negligible advantage over square
16-QAM at BER of 10−6 and ∆νTs = 5 ∗ 10−3. This advantage increases to around 2 dB at
∆νTs = 10−3. In addition, the SNR advantage extracted from BER curves of the optimized
and square 16-QAM for different levels of phase noise shows the same trend as the same curves
for BLER. This confirms validity of the set-partitioning and code rates obtained assuming no
error propagation.
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Chapitre 3

Experimental verification of MLCM
for 16-ary constellations

3.1 Introduction

Phase noise is a major impairment in transmission of 16-ary and higher order modulation for-
mats used in optical coherent systems. High levels of phase noise can originate from linewidth
of lasers, nonlinear effects or phase estimation algorithms. For instance, both parallelization
of phase estimation algorithms with feedback and reducing complexity of feedforward algo-
rithms increase phase noise. As observed in previous chapter, approaches based on MLCM are
interesting as robustness toward other impairments can be achieved simultaneously [38, 84].
In addition, MLCM based on low complexity component codes like RS codes provides a good
compromise on performance, overhead and complexity. MLCM has been studied by theory and
simulation for optical systems [84, 41]. However, there is no experimental demonstration using
MLCM for phase noise limited systems. Most experimental works consider a bit-interleaved
coded modulation based on LDPC [85, 86, 87, 88].

In this chapter, we present an experimental demonstration of MLCM coding with RS com-
ponent codes for 16-ary constellations. MLCM coding is designed using the approach in pre-
vious chapter. The MLCM coding is applied to two 16-ary constellations : a phase noise
optimized 16-QAM proposed in [10] and standard square 16-QAM. Post FEC BER of the
MLCM coding is calculated from offline processed data. By sweeping phase noise, we identify
the phase noise regime where the optimized constellation outperforms square 16-QAM. In
this chapter, phase noise is swept by an approach employed in DSP which effectively changes
linewidth by symbol time product ∆νTs by multiplying it with a factor M ; M∆νTs. Expe-
rimental post FEC BER of uniform rate coding with a single RS encoder and decoder is also
calculated and compared with MLCM coding. We show that there is up to 3 dB advantage in
MLCM coding compared to uniform rate coding with identical overhead. It is also shown that
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Figure 3.1 – Experimental setup, PC : polarization controller, OF : optical filter, EDFA :
erbium dopped fiber amplifier, ECL : external cavity laser, RTO : real-time oscilloscope, VOA :
variable optical attenuator, OSA : optical spectrum analyzer, DSP : digital signal processing.

the optimized constellation with MLCM coding, designed for a fixed M∆νTs, has advantage
over uniform rate coding and square 16-QAM with MLCM coding over a wide phase noise
regime.

The MLCM coding in this chapter is designed by minimization of BLER using a formula that
ignores error propagation in MSD. Nonetheless, experimental results show that the designed
MLCM coding yields good post-FEC BER. We also examine the pre-FEC BER threshold of
the MLCM coding. We find the threshold decreases with increasing phase noise. The chapter
is organized as follows. We present in the next section parameters of MLCM coding used in
the experiment. Then, the experimental setup is described and finally experimental results
are presented.

3.2 Designing an MLCM system

The method in previous chapter is used to design the MLCM coding. We find the set-
partitioning and optimal constituent code rates for a fixed SNR and phase error variance
σθ. Phase error variance σθ depends on the product of linewidth ∆ν by symbol time Ts and
the carrier phase recovery algorithm. The method in previous chapter assumes that phase
error is Gaussian distributed with zero mean and variance of σ2

θ . The MLCM coding in this
chapter is designed at OSNR of 15.5 dB and σθ = 0.11 rad derived from ∆νTs = 10−3 and
DD carrier recovery. This design is fixed, despite our sweeping values of SNR and effective
∆νTs.

We design an MLCM code for each of the two constellations assuming total code rate of
0.9373. First we find the set-partitioning and then we minimize BLER. The optimal code
rates for the optimized 16-QAM and square 16-QAM are [0.8586, 0.9116, 0.9800, 0.9989] and
[0.7639, 0.9904, 0.9956, 0.9994] respectively. These correspond to the code rates of four RS
codes each having 255 RS symbols at the output. The input symbols of RS encoders are
[217, 231, 249, 253] and [193, 251, 253, 253] for the optimized 16-QAM and square 16-QAM
respectively.
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3.3 Experimental setup

We first describe generation of electrical signals for two constellations. Then the setup is
described in detail and the DSP functions used in offline processing are explained. Finally,
our method for sweeping phase noise in offline processing is discussed.

3.3.1 Generation of electrical signals

Transmitted bits are generated using a PRBS of length 231−1. Transmitted bits are coded with
a single RS encoder or four RS encoders in the uniform rate or MLCM coding respectively.
The total number of encoded bits is 224, 800. We assign four bits to each symbol based on
a mapping specific to each modulation and coding scheme. Gray coding is used for uniform
rate coding while a mapping based on the designed set-partitioning is used in the MLCM
coding. An arbitrary waveform generator (AWG) including an 8-bit resolution digital-to-
analog converter (DAC) is used to generate 8 Gbaud symbols for either constellation. In-phase
(I) and quadrature phase (Q) signals for each constellation are generated separately and then
quantized to 64 levels before uploading to the DAC. Each data packet consists of 256× 1024
points of the AWG field-programmable gate array (FPGA) where 240× 1024 points are used
for symbols and the rest for zeros serving as a guard time between different packets in a single
capture of RTO data with 2 million points. Non-return to zero (NRZ) pulse shape with four
points per symbol is used in the pulse generation. After uploading I and Q signals to the
DAC, the quality of the generated RF signals are verified using a sampling oscilloscope.

3.3.2 The setup

The experimental setup is shown in Fig. 3.1. We use a homodyne coherent detection setup
where an external cavity laser (ECL), with linewidth of 15 kHz, is used as both transmitter
laser and LO. The optical signal is modulated by 8 Gbaud RF signals and then amplified by
an EDFA. The second EDFA is used to load noise on the signal. Signal power entering the
second EDFA is changed using a VOA from -40 to -28 dBm to sweep OSNR by steps of 1 dB.
Signal spectrum after the second EDFA is monitored by an OSA with reference bandwidth
of 0.1 nm and the OSNR is estimated. The second VOA is used to fix signal power entering
the receiver at -5 dBm. The LO power is fixed at 11 dBm. Our setup is a single polarization
coherent detection ; we maximize signal power by adjusting polarization controllers (PC). The
signal and LO are mixed in an integrated coherent receiver and the electrical signal is sampled
at 80 GS/s with a real-time scope having analog bandwidth of 32 GHz. The captured signal
is then processed offline by DSP.

In the DSP unit, we first extract the data packets (maximum of six packets in each capture).
Each packet is processed by dividing it into 40 frames (consisting of 1530 symbols) and
processing each frame separately. The processing includes low pass filtering (LPF) with a
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super-Gaussian filter of bandwidth 0.7 × baud rate, timing recovery and down sampling to
one sample per symbol (captured data contains 10 samples per symbol), MMSE filtering, phase
noise estimation, symbol demodulation, processing training symbols, bit demodulation and
decoding. The training symbols are used to update 20 taps of an MMSE filter and as updated
reference symbols used in the decision units of phase estimation and symbol demodulation.
DD carrier phase estimation is used in the DSP unit and the block length of the moving
average is optimized in each frame for minimum SER. In the decoder, we use either 1) a
single RS decoder for uniform rate coding, or 2) an MSD for MLCM coding. We consider the
impact of error propagation in the MSD implementation. The post FEC BER is calculated
using the known transmitted bits for each data packet. The maximum number of transmitted
bits is around 12 million.

3.3.3 Sweeping phase noise

In the experimental setup, a narrow linewidth laser is used as transmit and LO laser. Howe-
ver, we are interested in exploring MLCM performance in a phase noise limited regime for
which the MLCM coding is designed. In addition, the advantage of the optimized constellation
over square 16-QAM will be observed at much larger linewidth. As sweeping of linewidth by
employing different lasers is inconvenient as it requires lasers with a good distribution of line-
widths, which may not be available. In this chapter, we change 2∆νTs (factor of 2 accounting
for the same linewidth of transmit and LO lasers) by applying a fixed phase noise estimate to
M consecutive samples in the phase estimation unit. In this way the linewidth/symbol time
product is multiplied by M ; the effective product becomes 2M∆νTs. It can be shown that,
assuming a Wiener process for phase noise, the statistics of phase error are the same as that
of a linewidth M times larger, while the phase error distribution remains Gaussian.

3.4 Experimental results

In this section, SER and post-FEC BER of optimized and square constellations for MLCM
system are compared. Then advantage of MLCM coding over uniform rate coding is verified
for the phase noise optimized constellation.

3.4.1 MLCM performance for optimized and square 16-QAM

The optimized 16-QAM constellation is designed to minimize SER assuming a fixed phase
rotation [10]. In practical systems the phase error is not fixed, but rather statistical in nature,
and may be modeled as having a Gaussian distribution. The distribution is parameterized by
the level of phase error (linewidth/time interval product), and influenced by the particular
phase tracking algorithm used. We find a baseline for performance of square and optimized
16-QAM constellations by examining SER to understand to what extent the constellation
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designed for fixed offset is effective for random phase error. The use of MLCM will ensure
that SER gains are efficiently transferred to BER as well.

The SER for two constellations is shown in Fig. 3.2 from both experiment (solid curves) and
simulation (dashed curves). We note that as expected, for very low phase noise square 16-QAM
outperforms optimized 16-QAM. For 2M∆νTs > 10−3, however, the optimized 16-QAM has
better SER. The phase noise level in the experimental results is varied by changingM in DSP.
The linewidth is approximately ∆ν = 15 kHz for the ECL laser used. We sweep 2M∆νTs
from 3.7× 10−6 to 0.003 by varying M . The experimental SER curves for M = 1 in Fig. 3.2
are in close agreement to the SER curves reported in [10] for optimized and square 16-QAM
which is reported using an ECL laser. We observe ∼ 1 dB of penalty between simulation
and experiment, which can be explained by filtering effects and quantization noise in the
constellation coordinates.

For 2M∆νTs = 1.5× 10−3 (M = 400), the Gaussian distributed phase error has variance σθ
near 0.11, the value used to find the MLCM coding parameters. This coding strategy remains
fixed, even as we examine other values for 2M∆νTs. The experimental post-FEC BER of
MLCM coding for optimized and square 16-QAM constellations are shown in Fig. 3.3. For
a fixed M , post-FEC BER is calculated after transmitting 12 million bits. In Fig. 3.3, a
downward arrow indicates the post-FEC BER is less 10−6 for that and higher OSNR ; i.e.,
there were no bit errors.

To quantify the advantage of MLCM coding with an optimized constellation, we define
OSNRreq as 1 dB plus the maximum OSNR for which post-FEC errors are detected. For
example OSNRreq for M = 400 in Fig. 3.3 (a) is 16 dB. The advantage in OSNRreq for opti-
mized over 16-QAM constellation is seen for M = 400 and greater and at M = 600 optimized
constellation requires at least 2 dB less OSNR. The experimental OSNR advantage of the
optimized 16-QAM over square 16-QAM is close to the SNR advantage reported in Fig. 2.7
(b) by simulation ; the baud rate in Fig. 2.7 (b) is different and the phase estimation method
varies slightly from that used in this chapter.

Pre-FEC BER for the optimized constellation is shown in Fig. 3.4. The pre-FEC BER required
to achieve zero error count post-FEC is decreased from 10−3 for M = 200 to 6 × 10−4 for
M = 600. This is in contrast with uniform rate coding with a fixed pre-FEC BER threshold
related to the correction capacity of the code. In the MLCM coding, the performance of
the MSD decoder is highly dependent on the SER performance ; symbol errors cause error
propagation in the MSD. As a result, the pre-FEC threshold becomes stricter with increasing
phase noise.

55



Square 16QAM 

(a)

12 13 14 15 16 17 18 19

10
-4

10
-3

10
-2

10
-1

 

 

2M Ts  = 8 10
-4

, M = 200

2M Ts = 1.5 10
-3

, M = 400

2M Ts , M = 600

2M Ts , M = 800

 = 2.3 10
-3

 = 3 10
-3

2M Ts , M = 1 = 3.7 10
-6

10
-5

Optimized 16QAM

S
E

R

OSNR (dB)

12 13 14 15 16 17 18 19

10
-4

10
-3

10
-2

10
-1

 

 

10
-5

(b) OSNR (dB)

Simulation

Experiment

S
E

R
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3.2 – SER of (a) optimized and (b) square 16-QAM constellation. Dashed curves are
simulation results.

Table 3.1 – OSNRreq for MLCM and uniform rate coding

2M∆νTs 8× 10−4 1.5× 10−3 2.3× 10−3 3× 10−3

M 200 400 600 800

MLCM < 15 < 16 < 18 > 21
Uniform rate < 16 < 17 > 21 > 21

3.4.2 MLCM advantage over uniform rate coding

In this section, performance of MLCM coding is compared with the uniform rate one assuming
a total code rate of 0.9373. In Fig. 3.5, post-FEC BER curves of optimized 16-QAM are shown
for MLCM and uniform rate coding. Despite the MLCM coding being designed for OSNR =
15.5 dB and ∆νTs = 10−3, it performs better than uniform rate coding for a wide range of
phase noise. For ∆νTs = 2.3× 10−3 the SER in Fig. 3.2 reaches a floor, and the uniform rate
coding fails to achieve error free transmission. The optimized constellation approaches a lower
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Figure 3.3 – Post-FEC BER of optimized (solid) and square (dashed) 16-QAM constellation
for MLCM coding.

BER floor more slowly, and we can see in Fig. 3.5 that zero errors are observed by OSNR
of 17 dB. In table 3.1, OSNRreq in dB of the MLCM and uniform rate coding for optimized
constellation are compared for different phase noise values.

3.5 Conclusions

We presented experimental results for symbol error rate for MLCM coding for both phase
noise optimized and square 16-QAM constellations. Post-FEC BER for MLCM coding for
both constellations was calculated from experimental data. We show that the MLCM coding
designed for the optimum performance of BLER (by optimizing code rates) performs well
in terms of experimental post-FEC BER. Comparison of MLCM coding performance for
optimized and square 16-QAM shows that the advantage in using optimized constellation can
be greatly enhanced by employing MLCM coding. MLCM performance was also compared
with that of uniform rate coding. We observed that MLCM coding is robust to various levels
of phase noise, despite being designed for a fixed phase noise and OSNR.
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Chapitre 4

Conclusions and Future Work

We explored two aspects of phase noise in optical coherent systems. First aspect is phase noise
statistics in presence of CD where we modified the analysis in the literature. Second aspect is
the application of MLCM to phase noise limited coherent systems where we proposed a novel
method for designing of MLCM coding optimized for phase noise limited transmission.

Our first contribution was a more accurate formulation of phase noise and CD interaction. We
showed that a previously published analysis must be modified due to an overly simple model
for carrier phase recovery. We proposed a more accurate model for carrier phase recovery which
corresponds to DD carrier phase recovery. We exploited this modified model to derive modified
PDF of received symbols before decision. We also calculated BER of a DQPSK system semi-
analytically using our modified PDF and showed that the result is well matched with the
simulation for a wide range of system parameters. Our semi-analytical BER prediction is
useful in finding maximum reach or maximum tolerable LO linewidth without resorting to
simulations. Our semi-analytical BER prediction is also a lower bound of the BER from
VV carrier phase recovery which is a more practical phase recovery method. In addition,
our analytical PDF of received symbols can be used in designing soft decision FECs where
accurate likelihood probabilities are required.

Our second contribution deals with the application of MLCM to phase noise limited coherent
systems. We proposed a numerical method for designing MLCM coding ; the method can be
applied to arbitrary constellations if PDF of received symbols before decision is known. We
applied our MLCM design method to two phase noise limited coherent systems with known
PDF ; 1) a system with nonlinear phase noise where we optimized BLER by designing optimal
set-partitioning and code rates and showed that our design excels an already published MLCM
design in terms of BLER 2) a system with AWGN and phase noise where we examined post
FEC BER in addition to BLER and explored performance of a phase noise optimized and
square 16-QAM constellation. We showed that superior SER performance of phase noise
optimized constellation, over square 16-QAM, can be translated into post FEC BER and
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found the phase noise regime for the superior performance. Our post FEC BER results,
obtained from MC simulation, showed that the BLER, used for optimization of our MLCM
coding, is a reliable performance indicator and its minimizations translates into post FEC
BER minimization. In addition, we performed experiments to compare MLCM and uniform
rate coding for both phase noise optimized and square 16-QAM constellations. Experimental
post FEC BER showed the same trend as simulated post FEC BER confirming validity of our
method in practice. Although we designed MLCM coding for a specific combination of SNR
and phase noise, our MLCM coding showed superior performance over uniform rate coding in
experiments for a wide range of phase noise. This indicates robustness of our MLCM coding
design which is important in practice.

In summary, we explored two aspects of phase noise in coherent systems which are unique to
optical coherent systems and are not well studied in the literature of wireless communication.
For the first contribution, electronic compensation of large CD has just recently attracted
attention in optical communication community and problem of LO phase noise and CD inter-
action is a new problem. Our analysis of LO phase noise and CD interaction provides a more
accurate formulation of this interaction. For the second contribution, application of MLCM to
phase noise limited optical systems was not well studied before and we provided a systematic
method to exploit MLCM coding in optical coherent systems. In addition, we explored for
the first time accuracy of BLER optimization in MLCM design, rather than post FEC BER,
through simulation and experiment.

Many aspects of our work can be extended or improved. For analysis of phase noise and CD
interaction, we studied QPSK modulation in detail and 16-QAM briefly. However, extension
of our approach to other modulation formats can be subject of future research. In addition,
our analysis of phase noise and CD interaction ignores fiber nonlinearity, so our approach
is applicable to short and medium reach transmission and may not be accurate in long-haul
transmission. Developing a formulation by taking into account nonlinearity is another prospect
of research in future. For application of our MLCM design, we demonstrated application of
our method to 16-ary constellations. As we mentioned in chapter 3, our method becomes
numerically complex when it is applied to higher order constellations. Improving this aspect
of our method is an open subject for future research. In addition, we studied application of our
method for systems where CD is fully compensated and there is no nonlinearity. Exploring
application of our MLCM design to system with residual dispersion and nonlinearity is another
interesting subject for future research.
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