1,689 research outputs found

    On Code Design for Interference Channels

    Get PDF
    abstract: There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed. Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Sub-graph based joint sparse graph for sparse code multiple access systems

    Get PDF
    Sparse code multiple access (SCMA) is a promising air interface candidate technique for next generation mobile networks, especially for massive machine type communications (mMTC). In this paper, we design a LDPC coded SCMA detector by combining the sparse graphs of LDPC and SCMA into one joint sparse graph (JSG). In our proposed scheme, SCMA sparse graph (SSG) defined by small size indicator matrix is utilized to construct the JSG, which is termed as sub-graph based joint sparse graph of SCMA (SG-JSG-SCMA). In this paper, we first study the binary-LDPC (B-LDPC) coded SGJSG- SCMA system. To combine the SCMA variable node (SVN) and LDPC variable node (LVN) into one joint variable node (JVN), a non-binary LDPC (NB-LDPC) coded SG-JSG-SCMA is also proposed. Furthermore, to reduce the complexity of NBLDPC coded SG-JSG-SCMA, a joint trellis representation (JTR) is introduced to represent the search space of NB-LDPC coded SG-JSG-SCMA. Based on JTR, a low complexity joint trellis based detection and decoding (JTDD) algorithm is proposed to reduce the computational complexity of NB-LDPC coded SGJSG- SCMA system. According to the simulation results, SG-JSGSCMA brings significant performance improvement compare to the conventional receiver using the disjoint approach, and it can also outperform a Turbo-structured receiver with comparable complexity. Moreover, the joint approach also has advantages in terms of processing latency compare to the Turbo approaches

    Performance Improvement of Space Missions Using Convolutional Codes by CRC-Aided List Viterbi Algorithms

    Get PDF
    Recently, CRC-aided list decoding of convolutional codes has gained attention thanks to its remarkable performance in the short blocklength regime. This paper studies the convolutional and CRC codes of the Consultative Committee for Space Data System Telemetry recommendation used in space missions by all international space agencies. The distance spectrum of the concatenated CRC-convolutional code and an upper bound on its frame error rate are derived, showing the availability of a 3 dB coding gain when compared to the maximum likelihood decoding of the convolutional code alone. The analytic bounds are then compared with Monte Carlo simulations for frame error rates achieved by list Viterbi decoding of the concatenated codes, for various list sizes. A remarkable outcome is the possibility of approaching the 3 dB coding gain with nearly the same decoding complexity of the plain Viterbi decoding of the inner convolutional code, at the expense of slightly increasing the undetected frame error rates at medium-high signal-to-noise ratios. Comparisons with CCSDS turbo codes and low-density parity check codes highlight the effectiveness of the proposed solution for onboard utilization on small satellites and cubesats, due to the reduced encoder complexity and excellent error rate performance

    Nested turbo codes for the costa problem

    Get PDF
    Driven by applications in data-hiding, MIMO broadcast channel coding, precoding for interference cancellation, and transmitter cooperation in wireless networks, Costa coding has lately become a very active research area. In this paper, we first offer code design guidelines in terms of source- channel coding for algebraic binning. We then address practical code design based on nested lattice codes and propose nested turbo codes using turbo-like trellis-coded quantization (TCQ) for source coding and turbo trellis-coded modulation (TTCM) for channel coding. Compared to TCQ, turbo-like TCQ offers structural similarity between the source and channel coding components, leading to more efficient nesting with TTCM and better source coding performance. Due to the difference in effective dimensionality between turbo-like TCQ and TTCM, there is a performance tradeoff between these two components when they are nested together, meaning that the performance of turbo-like TCQ worsens as the TTCM code becomes stronger and vice versa. Optimization of this performance tradeoff leads to our code design that outperforms existing TCQ/TCM and TCQ/TTCM constructions and exhibits a gap of 0.94, 1.42 and 2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 bits/sample, respectively

    CROSSTALK-RESILIANT CODING FOR HIGH DENSITY DIGITAL RECORDING

    Get PDF
    Increasing the track density in magnetic systems is very difficult due to inter-track interference (ITI) caused by the magnetic field of adjacent tracks. This work presents a two-track partial response class 4 magnetic channel with linear and symmetrical ITI; and explores modulation codes, signal processing methods and error correction codes in order to mitigate the effects of ITI. Recording codes were investigated, and a new class of two-dimensional run-length limited recording codes is described. The new class of codes controls the type of ITI and has been found to be about 10% more resilient to ITI compared to conventional run-length limited codes. A new adaptive trellis has also been described that adaptively solves for the effect of ITI. This has been found to give gains up to 5dB in signal to noise ratio (SNR) at 40% ITI. It was also found that the new class of codes were about 10% more resilient to ITI compared to conventional recording codes when decoded with the new trellis. Error correction coding methods were applied, and the use of Low Density Parity Check (LDPC) codes was investigated. It was found that at high SNR, conventional codes could perform as well as the new modulation codes in a combined modulation and error correction coding scheme. Results suggest that high rate LDPC codes can mitigate the effect of ITI, however the decoders have convergence problems beyond 30% ITI

    Complexity-Aware Scheduling for an LDPC Encoded C-RAN Uplink

    Full text link
    Centralized Radio Access Network (C-RAN) is a new paradigm for wireless networks that centralizes the signal processing in a computing cloud, allowing commodity computational resources to be pooled. While C-RAN improves utilization and efficiency, the computational load occasionally exceeds the available resources, creating a computational outage. This paper provides a mathematical characterization of the computational outage probability for low-density parity check (LDPC) codes, a common class of error-correcting codes. For tractability, a binary erasures channel is assumed. Using the concept of density evolution, the computational demand is determined for a given ensemble of codes as a function of the erasure probability. The analysis reveals a trade-off: aggressively signaling at a high rate stresses the computing pool, while conservatively backing-off the rate can avoid computational outages. Motivated by this trade-off, an effective computationally aware scheduling algorithm is developed that balances demands for high throughput and low outage rates.Comment: Conference on Information Sciences and Systems (CISS) 2017, to appea

    Optimal Transmission Strategy and Capacity Region for Broadcast Z Channels

    Full text link
    Abstract — This paper presents an optimal transmission strategy, with simple encoding and decoding, for the two-user broadcast Z channel. This paper provides an explicit-form expression for the capacity region and proves that the optimal surface can be achieved by independent encoding. Specifically, the information messages corresponding to each user are encoded independently and the OR of these two streams is transmitted. Nonlinear turbo codes that pro-vide a controlled distribution of ones and zeros are used to demonstrate a low-complexity scheme that works close to the optimal surface. Index Terms—broadcast channel, broadcast Z channel, ca-pacity region, turbo codes. I
    corecore