2 research outputs found

    Component tree analysis of cystovirus φ6 nucleocapsid Cryo-EM single particle reconstructions

    Full text link
    The 3-dimensional structure of the nucleocapsid (NC) of bacteriophage φ6 is described utilizing component tree analysis, a topological and geometric image descriptor. The component trees are derived from density maps of cryo-electron microscopy single particle reconstructions. Analysis determines position and occupancy of structure elements responsible for RNA packaging and transcription. Occupancy of the hexameric nucleotide triphosphorylase (P4) and RNA polymerase (P2) are found to be essentially complete in the NC. The P8 protein lattice likely fixes P4 and P2 in place during maturation. We propose that the viral procapsid (PC) is a dynamic structural intermediate where the P4 and P2 can attach and detach until held in place in mature NCs. During packaging, the PC expands to accommodate the RNA, and P2 translates from its original site near the inner 3-fold axis (20 sites) to the inner 5-fold axis (12 sites) with excess P2 positioned inside the central region of the NC

    Component Trees For The Exploration Of Macromolecular Structures In Biology

    Full text link
    Understanding the three-dimensional structure of a macromolecular complex is essential for understanding its function. A component tree is a topological and geometric image descriptor that captures information regarding the structure of an image based on the connected components determined by different grayness thresholds. This dissertation presents a novel interactive framework for visual exploration of component trees of the density maps of macromolecular complexes, with the purpose of improved understanding of their structure. The interactive exploration of component trees together with a robust simplification methodology provide new insights in the study of macromolecular structures. An underlying mathematical theory is introduced and then is applied to studying digital pictures that represent objects at different resolutions. Illustrations of how component trees, and their simplifications, can help in the exploration of macromolecular structures include (i) identifying differences between two very similar viruses, (ii) showing how differences between the component trees reflect the fact that structures of mutant virus particles have varying sets of constituent proteins, (ii) utilizing component trees for density map segmentation in order to identify substructures within a macromolecular complex, (iv) showing how an appropriate component tree simplification may reveal the secondary structure in a protein, and (v) providing a potential strategy for docking a high-resolution representation of a substructure into a low-resolution representation of whole structure
    corecore