10,536 research outputs found

    Constant approximation algorithms for embedding graph metrics into trees and outerplanar graphs

    Full text link
    In this paper, we present a simple factor 6 algorithm for approximating the optimal multiplicative distortion of embedding a graph metric into a tree metric (thus improving and simplifying the factor 100 and 27 algorithms of B\v{a}doiu, Indyk, and Sidiropoulos (2007) and B\v{a}doiu, Demaine, Hajiaghayi, Sidiropoulos, and Zadimoghaddam (2008)). We also present a constant factor algorithm for approximating the optimal distortion of embedding a graph metric into an outerplanar metric. For this, we introduce a general notion of metric relaxed minor and show that if G contains an alpha-metric relaxed H-minor, then the distortion of any embedding of G into any metric induced by a H-minor free graph is at meast alpha. Then, for H=K_{2,3}, we present an algorithm which either finds an alpha-relaxed minor, or produces an O(alpha)-embedding into an outerplanar metric.Comment: 27 pages, 4 figires, extended abstract to appear in the proceedings of APPROX-RANDOM 201

    A New Framework for Network Disruption

    Get PDF
    Traditional network disruption approaches focus on disconnecting or lengthening paths in the network. We present a new framework for network disruption that attempts to reroute flow through critical vertices via vertex deletion, under the assumption that this will render those vertices vulnerable to future attacks. We define the load on a critical vertex to be the number of paths in the network that must flow through the vertex. We present graph-theoretic and computational techniques to maximize this load, firstly by removing either a single vertex from the network, secondly by removing a subset of vertices.Comment: Submitted for peer review on September 13, 201

    A node-capacitated Okamura-Seymour theorem

    Full text link
    The classical Okamura-Seymour theorem states that for an edge-capacitated, multi-commodity flow instance in which all terminals lie on a single face of a planar graph, there exists a feasible concurrent flow if and only if the cut conditions are satisfied. Simple examples show that a similar theorem is impossible in the node-capacitated setting. Nevertheless, we prove that an approximate flow/cut theorem does hold: For some universal c > 0, if the node cut conditions are satisfied, then one can simultaneously route a c-fraction of all the demands. This answers an open question of Chekuri and Kawarabayashi. More generally, we show that this holds in the setting of multi-commodity polymatroid networks introduced by Chekuri, et. al. Our approach employs a new type of random metric embedding in order to round the convex programs corresponding to these more general flow problems.Comment: 30 pages, 5 figure
    • …
    corecore