30,501 research outputs found

    Selection biases in empirical p(z) methods for weak lensing

    Full text link
    To measure the mass of foreground objects with weak gravitational lensing, one needs to estimate the redshift distribution of lensed background sources. This is commonly done in an empirical fashion, i.e. with a reference sample of galaxies of known spectroscopic redshift, matched to the source population. In this work, we develop a simple decision tree framework that, under the ideal conditions of a large, purely magnitude-limited reference sample, allows an unbiased recovery of the source redshift probability density function p(z), as a function of magnitude and color. We use this framework to quantify biases in empirically estimated p(z) caused by selection effects present in realistic reference and weak lensing source catalogs, namely (1) complex selection of reference objects by the targeting strategy and success rate of existing spectroscopic surveys and (2) selection of background sources by the success of object detection and shape measurement at low signal-to-noise. For intermediate-to-high redshift clusters, and for depths and filter combinations appropriate for ongoing lensing surveys, we find that (1) spectroscopic selection can cause biases above the 10 per cent level, which can be reduced to 5 per cent by optimal lensing weighting, while (2) selection effects in the shape catalog bias mass estimates at or below the 2 per cent level. This illustrates the importance of completeness of the reference catalogs for empirical redshift estimation.Comment: matches published version in MNRA

    PPM demodulation: On approaching fundamental limits of optical communications

    Full text link
    We consider the problem of demodulating M-ary optical PPM (pulse-position modulation) waveforms, and propose a structured receiver whose mean probability of symbol error is smaller than all known receivers, and approaches the quantum limit. The receiver uses photodetection coupled with optimized phase-coherent optical feedback control and a phase-sensitive parametric amplifier. We present a general framework of optical receivers known as the conditional pulse nulling receiver, and present new results on ultimate limits and achievable regions of spectral versus photon efficiency tradeoffs for the single-spatial-mode pure-loss optical communication channel.Comment: 5 pages, 6 figures, IEEE ISIT, Austin, TX (2010

    Energy Efficient Transmission over Space Shift Keying Modulated MIMO Channels

    Full text link
    Energy-efficient communication using a class of spatial modulation (SM) that encodes the source information entirely in the antenna indices is considered in this paper. The energy-efficient modulation design is formulated as a convex optimization problem, where minimum achievable average symbol power consumption is derived with rate, performance, and hardware constraints. The theoretical result bounds any modulation scheme of this class, and encompasses the existing space shift keying (SSK), generalized SSK (GSSK), and Hamming code-aided SSK (HSSK) schemes as special cases. The theoretical optimum is achieved by the proposed practical energy-efficient HSSK (EE-HSSK) scheme that incorporates a novel use of the Hamming code and Huffman code techniques in the alphabet and bit-mapping designs. Experimental studies demonstrate that EE-HSSK significantly outperforms existing schemes in achieving near-optimal energy efficiency. An analytical exposition of key properties of the existing GSSK (including SSK) modulation that motivates a fundamental consideration for the proposed energy-efficient modulation design is also provided
    • …
    corecore