35,674 research outputs found

    Binary search trees for generalized measurement

    Full text link
    Generalized quantum measurements (POVMs or POMs) are important for optimally extracting information for quantum communication and computation. The standard realization via the Neumark extension requires extensive resources in the form of operations in an extended Hilbert space. For an arbitrary measurement, we show how to construct a binary search tree with a depth logarithmic in the number of possible outcomes. This could be implemented experimentally by coupling the measured quantum system to a probe qubit which is measured, and then iterating.Comment: 5 pages, 4 figure

    Nested quantum search and NP-complete problems

    Full text link
    A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order d\sqrt{d}, where dd is the dimension of the search space, whereas any classical algorithm necessarily scales as O(d)O(d). It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree search problem by nesting this standard search algorithm. The number of iterations required to find the solution of an average instance of a constraint satisfaction problem scales as dα\sqrt{d^\alpha}, with a constant α<1\alpha<1 depending on the nesting depth and the problem considered. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring problem, this constant α\alpha is estimated to be around 0.62 for average instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested search algorithm, of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure

    Quantum walk speedup of backtracking algorithms

    Full text link
    We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.Comment: 23 pages; v2: minor changes to presentatio

    Quantum Robots and Environments

    Get PDF
    Quantum robots and their interactions with environments of quantum systems are described and their study justified. A quantum robot is a mobile quantum system that includes a quantum computer and needed ancillary systems on board. Quantum robots carry out tasks whose goals include specified changes in the state of the environment or carrying out measurements on the environment. Each task is a sequence of alternating computation and action phases. Computation phase activities include determination of the action to be carried out in the next phase and possible recording of information on neighborhood environmental system states. Action phase activities include motion of the quantum robot and changes of neighborhood environment system states. Models of quantum robots and their interactions with environments are described using discrete space and time. To each task is associated a unitary step operator T that gives the single time step dynamics. T = T_{a}+T_{c} is a sum of action phase and computation phase step operators. Conditions that T_{a} and T_{c} should satisfy are given along with a description of the evolution as a sum over paths of completed phase input and output states. A simple example of a task carrying out a measurement on a very simple environment is analyzed. A decision tree for the task is presented and discussed in terms of sums over phase paths. One sees that no definite times or durations are associated with the phase steps in the tree and that the tree describes the successive phase steps in each path in the sum.Comment: 30 Latex pages, 3 Postscript figures, Minor mathematical corrections, accepted for publication, Phys Rev
    • …
    corecore